Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u (2;−2; 1), kết luận nào sau[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = √3 B |→−u |= 1 C |→−u |= 3
D |→−u |= 9
Câu 2 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
y= 1
R
y= −1
2. D minR
y= 0
Câu 3 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A Đường tròn B Đường parabol C Đường hypebol D Đường elip.
Câu 4 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3+ 6x2+ mx − 2 đi qua điểm (11;1)?
Câu 5 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2
A m ∈ (0; 2) B m ∈ (−1; 2) C m ≥ 0 D −1 < m < 7
2.
Câu 6 Công thức nào sai?
Câu 7 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
Câu 8 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
Câu 9 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho
có diện tích lớn nhất bằng?
A. 3
√
3
2) B 3√3(m2) C. 3
√ 3
2) D 1 (m2)
Câu 10 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A (7
4; 2]S[22;+∞) B (7
4;+∞)
C [22;+∞) D [7
4; 2]S[22;+∞)
Câu 11 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 12 Cho hàm số y =
x
3
− mx+ 5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị
Câu 13 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng (−3; 1).
C Hàm số nghịch biến trên khoảng (−∞; −3) D Hàm số nghịch biến trên khoảng (−3; 1).
Trang 2Câu 14 Đạo hàm của hàm số y= log√
2
3x − 1 là:
A y′ = 6
(3x − 1) ln 2. B y
′ = 6 3x − 1
ln 2
(3x − 1) ln 2. D y
′ = 2 3x − 1
ln 2
Câu 15 Tìm giá trị cực đại yCD của hàm số y= x3− 12x+ 20
Câu 16 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi
K, I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
a√5
a√15
√ 15
Câu 17 Với mọi số phức z, ta có |z+ 1|2bằng
A |z|2+ 2|z| + 1 B z · z+ z + z + 1 C z+ z + 1 D z2+ 2z + 1
Câu 18 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 19 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 20 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 21 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 22 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2 z1
là
Câu 23 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số phức.
C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực không âm Câu 24 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 25 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= √34 B |z|=
√ 34
√ 34
Câu 26 Với giá trị nào của tham số m thì hàm số y = 2x − 3
x+ m2 đạt giá trị lớn nhất trên đoạn [1; 3] bằng 1
4 :
Câu 27 Cho hàm số f (x)= e
1
3x
3 −2x 2 +3x+1
Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (−∞; 1) và (3;+∞)
B Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3;+∞)
Trang 3C Hàm số nghịch biến trên khoảng (−∞; 1) và (3;+∞).
D Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3;+∞)
Câu 28 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được
A. 2a
2b
3
√
2π
2b 3
√ 2π
2b 3
√ 3π
2b 3
√ 3π
Câu 29 Một công ty chuyên sản xuất gỗ muốn thiết kế các thùng đựng hàng có dạng hình lăng trụ tứ
giác đều không nắp, có thể tích là 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng sao cho tổng S của diện tích xung quanh và diện tích mặt đáy là nhỏ nhất, S bằng
A 50√5dm2 B 75dm2 C 106, 25dm2 D 125dm2
Câu 30 Tính tích phân I =
e R
1
lnnx
x dx, (n > 1)
A I = 1
n+ 1.
Câu 31 Xác định tập tất cả các giá trị của tham số m để phương trình
2x3+ 3
2x
2− 3x − 1
2
=
m
2 − 1
có 4 nghiệm phân biệt
A S = (−2; −3
4) ∪ (
19
4) ∪ (
19
4 ; 6).
C S = (−2; −3
4) ∪ (
19
Câu 32 Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A y= x4+ 2x2− 1 B y= −x4− 2x2− 1 C y= x4− 2x2− 1 D y= 2x4+ 4x2+ 1
Câu 33 Cho hàm số y= 5x 2 −3x Tính y′
A y′= (2x − 3)5x2−3x B y′ = 5x2−3xln 5
C y′= (2x − 3)5x2−3xln 5 D y′ = (x2− 3x)5x2−3xln 5
Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
Câu 35 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 36 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 37 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 38 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 39 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1
Trang 4Câu 40 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1 z2
+
z2 z1
√ 2
1
√
2.
Câu 41 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 3
1
Câu 42 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 43 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3 R 2
|x2− 2x|dx
B.
3
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
D.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 46 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
64.
Câu 47 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
12.
Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 49 Hàm số nào trong các hàm số sau đồng biến trên R.
x+ 2 .
Câu 50 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Trang 5HẾT