LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = 0 thì vận tốc của vậ[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Một vật chuyển động với gia tốc a(t)= −20(1 + 2t)−2
Khi t = 0 thì vận tốc của vật là 30 (m/s) Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
Câu 2 Cho hình chóp S ABC có S A⊥(ABC), S A = a√3 Tam giác ABC vuông cân tại B, AC = 2a Thể tích khối chóp S ABC là
A. a
3√
3
3√
3√ 3
a3√ 3
Câu 3 Đồ thị như hình bên là đồ thị của hàm số nào?
A y= 2x − 1
−2x+ 3
x+ 1 .
Câu 4 Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0, với A là biên độ rung chấn tối đa và A0là một biên độ chuẩn (hằng số) Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8,3 độ Richter Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:
Câu 5 Đồ thị của hàm số y= x −
√
x+ 2
x2− 4 có tất cả bao nhiêu tiệm cận?
Câu 6 Cho log2b= 3, log2c= −4 Hãy tính log2(b2c)
Câu 7 Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy bằng R Khi đặt thùng
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng R
√ 3
2 (mặt nước thấp hơn trục của hình trụ) Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1 Tính tỉ số h1
h
A. 2π − 3
√
3
π − √3
√ 3
2π −
√ 3
Câu 8 Tính tích phân I=
e R
1
lnnx
x dx, (n > 1)
1
n.
Câu 9 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?
Câu 10 Hàm số y = (x + m)3+ (x + n)3− x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
−1
16.
Câu 11 Cho lăng trụ đứng ABC.A′
B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′
BC)bằng
600Biết diện tích của tam giác∆A′
BCbằng 2a2Tính thể tích V của khối lăng trụ ABC.A′
B′C′
A V = 3a3 B V = a3
√ 3
3 .
Trang 2Câu 12 Cho hàm số f (x) Biết f (0)= 4 và f′
(x)= 2 sin2
x+ 1, ∀x ∈ R, khi đó
π 4 R
0
f(x) bằng
A. π2+ 16π − 4
Câu 13 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần
lượt được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Câu 14 Tìm nguyên hàm của hàm số f (x)= cos 3x
C.R cos 3xdx= sin 3x
Câu 15 Số phức z= 2 − 3i có phần ảo là
Câu 16 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 ≤ m < −3 B −4 < m < −3 C −4 < m ≤ −3 D m > −4.
Câu 17 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 18 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 19 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng
A. 2
√
3
√ 2
√ 3
3 a
Câu 20 Xét các số phức z thỏa mãnz2− 3 − 4i= 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng
Câu 21 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x4− 3x2+ 2 C y= x−3
Câu 22 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 23 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 24 Cho cấp số nhân (un)với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
2
Câu 25 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 26 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
A. 3
3
4.
Trang 3Câu 27 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng
A. 4
1
1
5
2.
Câu 28 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 29 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 30 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 31 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (2; 4; 6) B (1; 2; 3) C (−2; −4; −6) D (−1; −2; −3).
Câu 32 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 33 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+
z2
= 2?
Câu 34 Cho hàm số y = f (x) liên tục trên R và có đạo hàm f′(x) = x(x + 1) Hàm số y = f (x) đồng biến trên khoảng nào trong các khoảng dưới đây?
Câu 35 Trong các mệnh đề sau, mệnh đề nào đúng?
A Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
B Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
C Hai khối chóp có thể tích bằng nhau thì bằng nhau.
D Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
Câu 36 Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
A y= −x3− 2x+ 3 B y= x4− 2x2+ 1 C y= x −3
Câu 37 Đồ thị hàm số y= −x3+ 3x2− 3x+ 2 có bao nhiêu điểm cực trị?
Câu 38 Trong các hình dưới đây, có bao nhiêu hình đa diện?
Trang 4Câu 39 Điểm cực đại của đồ thị hàm số y= x4− 2x2+ 3 là
Câu 40 Xét hàm số f (x) = −x4+ 2x2+ 3 trên đoạn [0; 2] Trong các khẳng định sau, khẳng định nào
sai?
A Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
B Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x= 0
C Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
D Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x= 1
Câu 41 Hình đa diện dưới đây có bao nhiêu cạnh?
Câu 42 Cho hàm số y= x+ 1
3 − x Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
Câu 43 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 44 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 45 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 46 Tính đạo hàm của hàm số y= 5x +cos3x
A y′ = (1 + 3 sin 3x)5x +cos3xln 5. B y′ = (1 − 3 sin 3x)5x +cos3xln 5.
C y′ = (1 − sin 3x)5x +cos3xln 5. D y′ = 5x +cos3xln 5.
Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A m < 0 B −3 ≤ m ≤ 0 C −4 ≤ m ≤ −1 D m > −2.
Câu 48 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
32π
31π
5 .
Câu 49 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2+ 8 B y= −2x4+ 4x2 C y= −x4+ 2x2 D y= x3− 3x2
Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay
⇔ x= y B Nếu a < 1 thì ax > ay
⇔ x< y
C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a > 1 thì ax > ay ⇔ x> y
Trang 5HẾT