1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (609)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 122,34 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD

A. V

V

V

V

5.

Câu 2 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

3.

Câu 3 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 4 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4;+∞)

B (7

4; 2]S[22;+∞)

Câu 5 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20

Câu 6 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 7 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất

Câu 8 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. 4m

2− 3

m2− 3

m2− 12

m2− 12

Câu 9 Tìm nguyên hàm của hàm số f (x)= cos 3x

C.R cos 3xdx = sin 3x

Câu 10 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của

3 R

1 [1+ f (x)]dx bằng

26

3 .

Câu 11 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A m > 1 B −1 ≤ m ≤ 0 C m < −1 D −1 ≤ m < 0.

Câu 12 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Trang 2

Câu 13 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là

C x= 2 + 2ty = −3tz = −1 + t D x= −2 + 4ty = −6tz = 1 + 2t

Câu 14 Đường thẳng (∆) : x −1

−1 không đi qua điểm nào dưới đây?

A A(−1; 2; 0) B (−1; −3; 1) C (1; −2; 0) D (3; −1; −1).

Câu 15 Cho hàm số y= f (x) có đạo hàm f′

(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng

Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

A x − 2y − 2z − 4= 0 B 3x − 4y+ 6z + 34 = 0

Câu 17 ChoR 1x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= ln x B F′(x)= 2

x 2 C F′(x)= −1

x 2 D F′(x)= 1

x

Câu 18 Tiệm cận ngang của đồ thị hàm số y= 2x +1

3x−1 là đường thẳng có phương trình:

A y= −1

3 B y= −2

3

Câu 19 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 20 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

Câu 21 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?

Câu 22 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 23 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z+ 2i| = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 24 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng

Câu 25 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

Câu 26 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 27 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 28 Có bao nhiêu số nguyên x thỏa mãn log3x

2− 16

343 < log7x2− 16

Câu 29 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x) bằng

A. 3

3

Trang 3

Câu 30 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên).

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

2

2√3

√ 3

3 a.

Câu 31 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x4− 3x2+ 2 B y= x −3

x −1. C y= x2− 4x+ 1 D y= x3− 3x − 5

Câu 32 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 33 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 34 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2 ⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √2

5

4

√ 13

2

Câu 35 Tìm tập hợp các điểm M biểu diễn số phức z sao cho

z − z

z −2i

= 2 ?

A Một đường thẳng B Một đường tròn C Một Elip D Một Parabol.

Câu 36 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A |z| > 2 B |z| < 1

3

1

2 < |z| < 3

2.

Câu 37 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức

P= |z1+ z2|

√ 3

√ 2

2 .

Câu 38 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 39 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

A.

4 .

Câu 40 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 41 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là

A w= √27 − i hoặcw= √27+ i B w= 1 + √27i hoặcw= 1 − √27i

C w= −√27 − i hoặcw= −√27+ i D w= 1 + √27 hoặcw= 1 − √27

Câu 42 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol.

Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2= 1 B (x − 1)2+ (y + 2)2+ (z − 4)2 = 1

C (x − 1)2+ (y − 2)2+ (z − 4)2= 2 D (x − 1)2+ (y − 2)2+ (z − 4)2 = 3

Trang 4

Câu 44 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 32π

31π

33π

5 .

Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:

A Nếu a > 1 thì ax > ay ⇔ x> y B Nếu a < 1 thì ax > ay ⇔ x< y

C Nếu a > 0 thì ax = ay ⇔ x= y D Nếu a > 0 thì ax > ay ⇔ x< y

Câu 46 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 47 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 500π

3

400π√3

125π√3

250π√3

Câu 48 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Câu 49 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD

Câu 50 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 17

πa2√ 15

πa2√ 17

Trang 5

HẾT

Ngày đăng: 10/04/2023, 10:12

🧩 Sản phẩm bạn có thể quan tâm