LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lăng trụ đứng ABC A1B1C1 có AB = a, AC = 2a, AA1 = 2a √ 5 và B̂AC = 1200[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
√
√ 5
a
√ 15
Câu 2 Cho hình lập phương ABCD.A′
B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
6.
Câu 3 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(ab2)= ln a + (ln b)2 B ln(a
b)= ln a
ln b.
C ln(ab)= ln a ln b D ln(ab2)= ln a + 2 ln b
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(0; 2; 3) B A(1; 2; 0) C A(1; 0; 3) D A(0; 0; 3).
Câu 5 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (−∞; −3).
C Hàm số nghịch biến trên khoảng (−3; 1) D Hàm số đồng biến trên khoảng (−3; 1).
Câu 6 Tính nguyên hàmR cos 3xdx
A −1
Câu 7 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 8 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox
A V = 8π
5 .
Câu 9 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; −6; 4) B M(2; −6; 4) C M(5; 5; 0) D M(−2; 6; −4).
Câu 10 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
A A3
Câu 11 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(−1; 2; −3); R = 3 B I(1; −2; 3); R = 3 C I(1; 2; −3); R = 3 D I(1; 2; 3); R= 3
Câu 12 Đường thẳng (∆) : x −1
−1 không đi qua điểm nào dưới đây?
A (1; −2; 0) B (3; −1; −1) C A(−1; 2; 0) D (−1; −3; 1).
Câu 13 Thể tích khối lập phương có cạnh 3a là:
Câu 14 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
A V = 32π
5 .
Trang 2Câu 15 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 16 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.
Câu 17 NếuR4
−1 f(x)dx= 2 và R4
−1g(x)dx= 3 thì R4
−1[ f (x)+ g(x)]dx bằng
Câu 18 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 19 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′ = − 1
x
Câu 20 Xét các số phức z thỏa mãnz2− 3 − 4i= 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng
Câu 21 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng
A.
√
3
√ 2
√ 3
Câu 22 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?
Câu 23 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 24 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n2 = (1; −1; 1) B.→−n1 = (−1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n3 = (1; 1; 1)
Câu 25 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng
Câu 26 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (2; 4; 6) B (−1; −2; −3) C (1; 2; 3) D (−2; −4; −6).
Câu 27 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 28 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n3 = (1; 1; 1) B.→−n1 = (−1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n2 = (1; −1; 1)
Câu 29 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 30 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= lnx B F′(x)= −1
x.
Câu 31 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Trang 3Câu 32 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
3.
Câu 33 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= −2
3.
Câu 34 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 35 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một Parabol B Một đường thẳng C Một đường tròn D Một Elip.
Câu 36 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1
2 ⇔ x= 9
2 ⇔ z= 9
2 −
9
2i|z+ 4i − 5|
A. 1
4
√ 13
5
2
Câu 37 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Parabol B Một đường thẳng C Hai đường thẳng D Đường tròn.
Câu 38 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A x − y+ 8 = 0 B x+ y − 8 = 0 C x − y+ 4 = 0 D x+ y − 5 = 0
Câu 39 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng
5π
2 .
Câu 40 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là
Câu 41 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 42 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 3 B max |z|= 4 C max |z|= 6 D max |z|= 7
Câu 43 Biết a, b ∈ Z sao choR (x+ 1)e2xdx= (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 45 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= x3− 3x2
B y= −x4+ 2x2 C y= −x4+ 2x2+ 8 D y= −2x4+ 4x2
Trang 4Câu 46 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)
và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A −2x − y+ 4z − 8 = 0 B 2x+ y − 4z + 7 = 0
C 2x+ y − 4z + 5 = 0 D 2x+ y − 4z + 1 = 0
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 48 Hàm số nào trong các hàm số sau đồng biến trên R.
A y= 4x+ 1
Câu 49 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
3
5a√2
5a√2
5a√3
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Trang 5HẾT