1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (505)

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 121,05 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình 6 22x − 13 6x + 6 32x = 0 A 13 6 B 0[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

A. 13

Câu 2 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường

tròn nội tiếp tam giác ABC bằng

Câu 3 Cho hàm số f (x)= e

1

3x

3 −2x2+3x+1

Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3;+∞)

B Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3;+∞)

C Hàm số nghịch biến trên khoảng (−∞; 1) và (3;+∞)

D Hàm số đồng biến trên khoảng (−∞; 1) và (3;+∞)

Câu 4 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x+ 5, tiếp tuyến tại A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C)

A. 9

5

7

3

4.

Câu 5 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình

A (x − 1)2+ (y + 1)2+ (z + 2)2= 6 B (x+ 1)2+ (y − 1)2+ (z − 2)2 = 6

C (x+ 1)2+ (y − 1)2+ (z − 2)2= √6 D (x+ 1)2+ (y − 1)2+ (z − 2)2 = 24

Câu 6 Cho tam giác ABC vuông tại A, AB = a, BC = 2a Tính thể tích khối nón nhận được khi quay tam giác ABC quanh trục AB

3

Câu 7 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục bé

bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được

A. 2a

2b

2a2b

4a2b

4a2b

3√3π .

Câu 8 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường

y= 1

x, x= 1, x = 2 và trục hoành

A V = π

2 .

Câu 9 Số phức z= 2 − 3i có phần ảo là

Câu 10 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x+ 4)2+ (y − 8)2 = 20 B (x − 4)2+ (y + 8)2= 20

C (x − 4)2+ (y + 8)2 = 2√5 D (x+ 4)2+ (y − 8)2= 2√5

Câu 11 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 209

1

1

8

105.

Trang 2

Câu 12 Trong các số phức z thỏa mãn

z − i =

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= 3

5 −

6

5 + 6

5+ 27

5 −

27

5 i.

Câu 13 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?

A V = 32

5 .

Câu 14 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=

a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 15 Đường thẳng (∆) : x −1

−1 không đi qua điểm nào dưới đây?

A A(−1; 2; 0) B (−1; −3; 1) C (1; −2; 0) D (3; −1; −1).

Câu 16 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : x − 2z + 5 = 0 B (P) : x − 2y + 1 = 0 C (P) : y + z − 1 = 0 D (P) : y − z + 2 = 0.

Câu 17 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

3

√ 3

√ 2

2 a

Câu 18 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

Câu 19 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:

A y′ = xπ−1 B y′ = πxπ C y′ = 1

Câu 20 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x

3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 21 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 22 NếuR2

0 f(x)dx= 4 thì R2

0

h1

2f(x) − 2idx bằng

Câu 23 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 24 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 25 Xét các số phức z thỏa mãn z2− 3 − 4i = 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng

Câu 26 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:

A y′ = πxπ−1 B y′ = πxπ C y′ = 1πxπ−1 D y′ = xπ−1

Câu 27 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Trang 3

Câu 28 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 29 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 30 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 31 NếuR02 f(x)= 4 thì R2

0[1

2f(x) − 2] bằng

Câu 32 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= lnx B F′(x)= −1

x2 C F′(x)= 2

x.

Câu 33 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

A.R f(x)= −sinx + x2

C.R f(x)= sinx + x2

Câu 34 Cho hàm số y= x3− 3x2− 9x − 5 Trong các khẳng định sau, khẳng định nào sai?

A Hàm số có một điểm cực đại và một điểm cực tiểu.

B Giá trị cực tiểu của hàm số là 3.

C Giá trị cực đại của hàm số là 0.

D Hàm số có hai điểm cực trị.

Câu 35 Trong các hình dưới đây, có bao nhiêu hình đa diện?

Câu 36 Cho hàm số y= −x4− x2+ 1 Trong các khẳng định sau, khẳng định nào sai?

A Điểm cực tiểu của hàm số là (0; 1) B Đồ thị hàm số cắt trục tung tại điểm (0; 1).

C Đồ thị hàm số có một điểm cực đại D Đồ thị hàm số không có tiệm cận.

Câu 37 Đồ thị hàm số y= −x3+ 3x2− 3x+ 2 có bao nhiêu điểm cực trị?

Câu 38 Xét hàm số f (x) = −x4+ 2x2+ 3 trên đoạn [0; 2] Trong các khẳng định sau, khẳng định nào

sai?

A Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x= 1

B Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.

C Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x= 0

D Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.

Câu 39 Cho hàm số y= x+ 1

3 − x Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].

Trang 4

Câu 40 Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?

A y= x4− 2x2+ 1 B y= −x3− 2x+ 3 C y= −x2+ 3x + 5 D y= x −3

5 − x.

Câu 41 Điểm cực đại của đồ thị hàm số y= x4− 2x2+ 3 là

Câu 42 Trong các mệnh đề sau, mệnh đề nào đúng?

A Hai khối chóp có thể tích bằng nhau thì bằng nhau.

B Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.

C Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.

D Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.

Câu 43 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 44 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 45 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

6

3a√6

3a√30

a√15

Câu 46 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = √ 1

x2− 1 ln 4

(x2− 1) ln 4. C y

(x2− 1)log4e. D y

2(x2− 1) ln 4.

Câu 47 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m < −2 B m > 1 hoặc m < −1

3 C m > 1. D m > 2 hoặc m < −1.

Câu 48 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a√3

5a√2

5a√2

Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 50 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Trang 5

HẾT

Ngày đăng: 10/04/2023, 15:14

🧩 Sản phẩm bạn có thể quan tâm