Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Cho hình lập phương ABCD.A′
B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
6.
Câu 2 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 3 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
A (0;1
4;+∞)
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(1; 5; 3) B C(5; 9; 5) C C(−3; 1; 1) D C(3; 7; 4).
Câu 5 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(0; 2; 3) B A(1; 2; 0) C A(1; 0; 3) D A(0; 0; 3).
Câu 6 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho
có diện tích lớn nhất bằng?
A. 3
√
3
√ 3
2)
Câu 7 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 2x2+ 1 B y = x4+ 2x2+ 1 C y= −x4+ 1 D y= x4+ 1
Câu 8 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 9 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là
A 5x5+ sin x + C B 5x5− sin x+ C C x5− sin x+ C D x5+ sin x + C
Câu 10 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 11 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?
A y= 1+ x
2
−2x+ 3
x −2 .
Câu 12 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính
e 2
R
1
f(ln x) 2x .
Câu 13 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 14 Cho hàm số f (x)=
− 1
3x
2(2m+ 3)x2− (m2+ 3m)x + 2
3
Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?
Câu 15 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Trang 2Câu 16 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Câu 17 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= 3√5 B |w|= 5 C |w|= √73 D |w|= √5
Câu 18 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2− (1+ 4i)z + 9 − 7i = 0 B z2− (5 − 2i)z+ 9 − 7i = 0
C z2+ (1 + 4i)z − 9 + 7i = 0 D z2+ (5 − 2i)z − 9 + 7i = 0
Câu 19 Tất cả các căn bậc hai của số phức z= 15 − 8i là:
A 5 − 2i và −5+ 2i B 4+ i và −4 + i C 4 − i và 2+ 3i D 4 − i và −4+ i
Câu 20 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0là
Câu 21 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?
A |w|= √3 B |w|= 2√2 C |w|= √2 D |w|= √5
Câu 22 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
Câu 23 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là
Câu 24 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?
A Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm
B Phương trình đã cho luôn có nghiệm.
C Phương trình đã cho có tích hai nghiệm bằng c
a.
D Phương trình đã cho có tổng hai nghiệm bằng −b
a .
Câu 25 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?
Câu 26 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2 bằng
Câu 27 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 28 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x4− 3x2+ 2 C y= x −3
x −1. D y= x3− 3x − 5
Câu 29 Cho hàm số y= f (x) có đạo hàm f′(x) = (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 30 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Trang 3Câu 31 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 32 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 33 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 35 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 4
√ 5
√ 6
√ 2
√ 2
3 .
Câu 36 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 37 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 1
2 < |z| < 3
2. B |z| <
1
3
2 ≤ |z| ≤ 2. D |z| > 2.
Câu 38 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4;
5 4
!
4;+∞
!
4
!
Câu 40 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
2
√ 3
Câu 41 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 42 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 4√13 B T = 2
√ 85
√ 97
Câu 43 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A 3x − 4y+ 6z + 34 = 0 B −x+ 2y + 2z + 4 = 0
C x − 2y − 2z − 4= 0 D x+ 2y + 2z + 8 = 0
Câu 44 Hàm số y = (x + m)3+ (x + n)3− x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
−1
16.
Trang 4Câu 45 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x − 4)2+ (y + 8)2 = 2√5 B (x+ 4)2+ (y − 8)2 = 2√5
C (x − 4)2+ (y + 8)2 = 20 D (x+ 4)2+ (y − 8)2 = 20
Câu 46 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 47 Đường thẳng (∆) : x −1
2 = y+ 2
−1 không đi qua điểm nào dưới đây?
A A(−1; 2; 0) B (3; −1; −1) C (−1; −3; 1) D (1; −2; 0).
Câu 48 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(−3
4;
1
3
4;
1
3
4;
1
3
4;
3
2; −1).
Câu 49 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?
A.
−
→
c
−
→ a
= √2 C.→−b ⊥→−c D.→−b ⊥→−a
Câu 50 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A m < −1 B −1 ≤ m ≤ 0 C m > 1 D −1 ≤ m < 0.
HẾT