1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (950)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ Nhi
Định dạng
Số trang 4
Dung lượng 124,37 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x − 1 1 = y + 2 −[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − y − 2z = 0 B (P) : x − y + 2z = 0 C (P) : x + y + 2z = 0 D (P) : x − 2y − 2 = 0.

Câu 2 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 3 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= −5 B f (−1)= 3 C f (−1)= −1 D f (−1)= −3

Câu 4 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 5 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(a

b)= ln a

2)= ln a + (ln b)2

C ln(ab)= ln a ln b D ln(ab2)= ln a + 2 ln b

Câu 6 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

√ 3

a

√ 2

a

√ 3

4 .

Câu 7 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√

ba3

A. m

m2− 3

m2− 12

4m2− 3

Câu 8 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 9 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; 3) B.→−n = (1; −2; −1) C.→−n = (1; 3; −2) D.→−n = (1; 2; 3)

Câu 10 Cho khối lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 3

3 a Tính thể tích của khối lăng trụ ABC.A

′B′C′

A. a

2

a3

a3

a3√ 2

Câu 11 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac

nhau

10

Câu 12 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox

A V = 512π

5.

Trang 2

Câu 13 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P = 1

14.

Câu 14 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?

A (3, 3; 3, 5)· B (3, 7; 3, 9)· C (3, 1; 3, 3)· D (3, 5; 3, 7)·.

Câu 15 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 16 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng

MN có phương trình tham số là

Câu 17 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?

A |w|= √3 B |w|= √5 C |w|= 2√2 D |w|= √2

Câu 18 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là

Câu 19 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?

A Phương trình đã cho có tích hai nghiệm bằng c

a.

B Phương trình đã cho luôn có nghiệm.

C Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm

D Phương trình đã cho có tổng hai nghiệm bằng −b

a .

Câu 20 Tất cả các căn bậc hai của số phức z= 15 − 8i là:

A 4 − i và −4+ i B 4 − i và 2+ 3i C 4+ i và −4 + i D 5 − 2i và −5+ 2i

Câu 21 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?

Câu 22 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?

Câu 23 Biết z0 là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 20 = 0 Trên mặt phẳng tọa

độ, điểm nào dưới đây là điểm biểu diễn của số phức w= (1 + i)z0− 2z0 ?

Câu 24 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?

Câu 25 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu

a − bbằng

Câu 26 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 1 + 2t

y= −1 + t

x= 1 + 2t

y= −1 + 3t

x= 5 + t

y= 5 + 2t

x= 5 + 2t

y= 5 + 3t

z= −1 + t .

Trang 3

Câu 27 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 28 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 24

√ 2

Câu 29 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 30 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= 1

xln3.

Câu 31 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

A. 8

Câu 32 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2

0 f(2x) bằng

3

Câu 33 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x −3

x −1. B y= x2− 4x+ 1 C y= x3− 3x − 5 D y= x4− 3x2+ 2

Câu 34 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 1

Câu 35 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 36 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3.

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2

√ 2

3 .

Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 38 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Trang 4

Câu 39 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

3√2

2 .

Câu 40 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 41 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 42 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

C Phần thực của z là số âm D z là một số thực không dương.

Câu 43 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (2; 3; −4) B.→−n = (−2; 3; 1) C.→−n = (−2; 3; 4) D.→−n = (2; −3; 4)

Câu 44 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

Câu 45 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 46 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là

Câu 47 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ

Câu 48 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= −6

5 −

27

5 −

6

5+ 27

5 + 6

5i.

Câu 49 Cho lăng trụ đứng ABC.A′B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′

BC)bằng

600Biết diện tích của tam giác∆A′

BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′

B′C′

A V = a3√

√ 3

Câu 50 Đường thẳng (∆) : x −1

−1 không đi qua điểm nào dưới đây?

A (1; −2; 0) B (3; −1; −1) C A(−1; 2; 0) D (−1; −3; 1).

HẾT

Ngày đăng: 10/04/2023, 15:05