1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (950)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Mễ Nhiêu
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ Nhiêu
Định dạng
Số trang 4
Dung lượng 125,08 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng? A y = x3 − 2x2 +[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?

x −1 .

Câu 2 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC =

√ 3ab2

√ 3b2− a2

C VS.ABC =

√ 3a2b

2

q

b2− √3a2

Câu 3 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

A V = 10π

Câu 4 Bất đẳng thức nào sau đây là đúng?

C (√3+ 1)π > (√3+ 1)e D (√3 − 1)e < (√3 − 1)π

Câu 5 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

l2− R2

Câu 6 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

R

y= 1

y= −1

2. D minR

y= 0

Câu 7 Hàm số nào sau đây không có cực trị?

Câu 8 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm

số y= 3x2+ log3x+ m là:

A S = [ 0; +∞) B S = (−∞; ln3) C S = [ -ln3; +∞) D S = (−∞; 2)

Câu 9 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?

A Q(4 ; 4 ; 2) B M(0 ; 0 ; 2) C N(1 ; 1 ; 7) D P(4 ; −1 ; 3).

Câu 10 Đạo hàm của hàm số y= (2x + 1)−

1

3 trên tập xác định là

A (2x+ 1)−

1

1

3 ln(2x+ 1)

C −2

3(2x+ 1)−

4

3(2x+ 1)−

4

3

Câu 11 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng

Trang 2

Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

1 = y+ 1

3 = z+ 2

−2 Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

A. 2

3

5.

Câu 13 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB= a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng

A. 2a

3

3

3

Câu 14 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 15 Cho số phức zthỏa mãn

z

i+ 2

= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)

Câu 16 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng

(S BD) theo a

a

√ 2

2 .

Câu 17 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số thực.

C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực không âm Câu 18 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 19 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 20 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 21 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

A −22016 B −21008 C −21008+ 1 D 21008

Câu 22 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|=

√ 34

√ 34

Câu 23 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 24 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 25 Tìm số phức liên hợp của số phức z= i(3i + 1)

Trang 3

Câu 26 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 4

1

9

18

35.

Câu 27 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 28 NếuR2

0 f(x)= 4 thì R2

0[1

2f(x) − 2] bằng

Câu 29 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:

A y′= πxπ−1 B y′ = xπ−1 C y′ = πxπ D y′ = 1πxπ−1

Câu 30 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (−1; −2; −3) B (1; 2; 3) C (2; 4; 6) D (−2; −4; −6).

Câu 31 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n1= (−1; 1; 1) B.→−n4 = (1; 1; −1) C.→−n3 = (1; 1; 1) D.→−n2 = (1; −1; 1)

Câu 32 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 33 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 34 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 3

2 < |z| < 2 B 2 < |z| < 5

1

2 < |z| < 3

5

2 < |z| < 7

2.

Câu 35 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 36 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

Câu 37 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

C a2+ b2+ c2− ab − bc − ca D a2+ b2+ c2+ ab + bc + ca

Câu 38 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 39 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

Câu 40 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Trang 4

Câu 41 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

1

2.

Câu 42 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

√ 2

1

2.

Câu 43 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

Câu 44 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=

a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 45 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Câu 46 Cho hàm số f (x) Biết f (0)= 4 và f′

(x)= 2 sin2

x+ 1, ∀x ∈ R, khi đó

π 4 R

0

f(x) bằng

A. π2+ 16π − 16

Câu 47 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ

Câu 48 Đường thẳng (∆) : x −1

2 = y+ 2

−1 không đi qua điểm nào dưới đây?

A (3; −1; −1) B A(−1; 2; 0) C (1; −2; 0) D (−1; −3; 1).

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm

tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→

A M(−2; −6; 4) B M(5; 5; 0) C M(2; −6; 4) D M(−2; 6; −4).

Câu 50 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

15

1

√ 3

√ 3

2 .

HẾT

Ngày đăng: 10/04/2023, 09:18