Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Đạo hàm của hàm số y = log√2 ∣∣∣∣∣3x − 1 ∣∣∣∣∣ là A y′ = 6∣∣∣∣∣3x − 1 ∣∣[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 6
3x − 1
ln 2
3x − 1
ln 2
(3x − 1) ln 2. D y
(3x − 1) ln 2.
Câu 2 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 3 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
√ 3
a√2
a√3
4 .
Câu 4 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A. 2π
√
2.a2
π√2.a2
π√3.a2
√ 3.a2
Câu 5 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
3.
Câu 6 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A. 1
1
2
3.
Câu 7 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho
có diện tích lớn nhất bằng?
√ 3
√ 3
2)
Câu 8 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A − ln 2 −1
2. B ln 2+ 1
1
1
2.
Câu 9 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?
A I(−1; −2; 3) B K(3; 0; 15) C H(−2; −1; 3) D J(−3; 2; 7).
Câu 10 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng
MN có phương trình tham số là
Trang 2C x= 1 − ty = tz = 1 + t D x= 1 + ty = tz = 1 − t.
Câu 12 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac
nhau
Câu 13 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích
toàn phần St p của hình nón đó
A St p = 3
4πa2 D St p = 1
4πa2
Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40 B (x − 1)2+ (y − 4)2+ (z + 2)2= 10
C (x − 1)2+ (y − 4)2+ (z + 2)2 = 40 D (x+ 1)2+ (y + 4)2+ (z − 2)2= √40
Câu 15 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?
A (3, 5; 3, 7)· B (3, 3; 3, 5)· C (3, 7; 3, 9)· D (3, 1; 3, 3)·.
Câu 16 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn
z1
2
+
z2
2
= 5
Câu 17 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng
T = |z1|+ |z2|+ |z3|+ |z4|
Câu 18 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?
Câu 19 Tất cả các căn bậc hai của số phức z= 15 − 8i là:
A 4+ i và −4 + i B 5 − 2i và −5+ 2i C 4 − i và 2+ 3i D 4 − i và −4+ i
Câu 20 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu
a − bbằng
Câu 21 Căn bậc hai của -4 trong tập số phức là.
Câu 22 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= 3√5 B |w|= √73 C |w|= √5 D |w|= 5
Câu 23 Biết phương trình z2+ mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo Khi đó tham số thực
mgần giá trị nào nhất trong các giá trị sau?
Câu 24 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Câu 25 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng
A −3
3
1
1
2.
Trang 3Câu 26 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
A.
x= 5 + 2t
y= 5 + 3t
z= −1 + t
x= 1 + 2t
y= −1 + 3t
z= −1 + t
x= 5 + t
y= 5 + 2t
z= 1 + 3t
x= 1 + 2t
y= −1 + t
z= −1 + 3t
Câu 27 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
24
5 .
Câu 28 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x3− 3x − 5 C y= x −3
x −1. D y= x4− 3x2+ 2
Câu 29 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 30 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2bằng
Câu 31 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 33 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
2 + C
C.R f(x)= sinx + x2
Câu 34 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
3
2.
Câu 35 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 3
2 < |z| < 3 B. 5
2 < |z| < 4 C 3 < |z| < 5 D. 1
2 < |z| < 2
Câu 36 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
C Phần thực của z là số âm D z là một số thực không dương.
Câu 37 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 38 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1 B |z|= 1
Trang 4Câu 39 Cho a, b, c là các số thực và z= −1
2 +
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 40 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 41 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4;+∞
!
4;
5 4
!
4
!
Câu 43 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 44 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
A V = 3a3 B V = 2a3 C V = a3
Câu 45 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
5π.
Câu 46 Với a là số thực dương tùy ý, log5(5a) bằng
Câu 47 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (−∞; −3] ∪ [3; +∞) B (−∞; 3] C (0; 3] D [−3; 3].
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; 6; −4) B M(5; 5; 0) C M(−2; −6; 4) D M(2; −6; 4).
Câu 49 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 50 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
HẾT