1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (716)

4 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ
Định dạng
Số trang 4
Dung lượng 124,62 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số nghịch biến trên (0;+∞) B Hàm số nghịch biến trên R.

C Hàm số đồng biến trên R D Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)

Câu 2 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại

Câu 4 Hàm số nào sau đây đồng biến trên R?

A y= √x2+ x + 1 − √x2− x+ 1 B y= tan x

Câu 5 Cho số thực dươngm Tính I =

m

R

0

dx

x2+ 3x + 2 theo m?

A I = ln(m+ 1

m+ 2). B I = ln(

m+ 2

m+ 1). C I = ln(

m+ 2 2m+ 2). D I = ln(

2m+ 2

m+ 2 ).

Câu 6 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC = a2

√ 3b2− a2

√ 3ab2

12 .

C VS.ABC = a

2

q

b2− √3a2

√ 3a2b

12 .

Câu 7 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A bc > 0 B ab < 0 C ac < 0 D ad > 0

Câu 8 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x

A S = 1

6.

Câu 9 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.

Phương trình của (S ) là

A (x − 1)2+ (y − 4)2+ (z + 2)2= 10 B (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40

C (x+ 1)2+ (y + 4)2+ (z − 2)2= √40 D (x − 1)2+ (y − 4)2+ (z + 2)2 = 40

Câu 10 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

−2 = z+ 2

d2 : x −4

1 = y+ 1

3 = z+ 2

−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

A. 2

3

53.

Câu 11 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nP và

−→

nQ Biết cosin góc giữa hai vectơ−→nP và−n→Qbằng −

√ 3

2 Góc giữa hai mặt phẳng (P) và (Q) bằng.

Trang 2

Câu 12 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120 Một mặt phẳng đi qua

Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB

Câu 13 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn

phương án dưới đây Hỏi hàm số đó là hàm số nào?

Câu 14 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a

√ 2

2 Tính góc giữa mặt bên (S DC) và mặt đáy

Câu 15 Cho hàm số f (x)=

− 1

3x

3+ 1

2(2m+ 3)x2− (m2+ 3m)x +2

3

Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?

Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2+ (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?

A (P) tiếp xúc mặt cầu (S ) B (P) cắt mặt cầu (S ).

C (P) không cắt mặt cầu (S ) D (P) đi qua tâm mặt cầu (S ).

Câu 17 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 18 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= 21009 B (1+ i)2018 = −21009i C (1+ i)2018 = −21009 D (1+ i)2018 = 21009i

Câu 19 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= 5 B |z1+ z2|= √5 C |z1+ z2|= 1 D |z1+ z2|= √13

Câu 20 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 21 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 22 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z+ z = 2bi B z · z = a2− b2 C z − z= 2a D |z2|= |z|2

Câu 23 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 24 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 25 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 26 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 27 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x2− 4x+ 1 B y= x −3

x −1. C y= x3− 3x − 5 D y= x4− 3x2+ 2

Câu 28 Có bao nhiêu số nguyên x thỏa mãn log3x

2− 16

343 < log7x2− 16

Trang 3

Câu 29 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 30 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 4

9

18

1

7.

Câu 31 NếuR4

−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng

Câu 32 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F

(x)= 2

(x)= 1

(x)= −1

x2

Câu 33 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 5 + 2t

y= 5 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 5 + t

y= 5 + 2t

z= 1 + 3t

Câu 34 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 3

2. B |w|min= 2 C |w|min = 1 D |w|min = 1

2.

Câu 35 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

2.

Câu 36 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

A |A| < 1 B |A| ≥ 1 C |A| > 1 D |A| ≤ 1.

Câu 37 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

Câu 38 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

2.

Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 40 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P= (|z| − 2)2

|z|2− 42 C P =

|z|2− 22 D P = (|z| − 4)2

Trang 4

Câu 42 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là số thuần ảo B Phần thực của z là số âm.

Câu 43 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của

3

R

1

[1+ f (x)]dx bằng

32

3 .

Câu 44 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 1 và x = −1 B y= 2 và x = 1 C y= −1 và x = 2 D y= 1 và x = 2

Câu 45 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?

A.→−b ⊥→−c B.

→ c

→ a

= √2

Câu 46 Thể tích khối lập phương có cạnh 3a là:

Câu 47 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng

Câu 48 Với a là số thực dương tùy ý, log5(5a) bằng

A 5 − log5a B 1 − log5a C 1+ log5a D 5+ log5a

Câu 49 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

Câu 50 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

1

4 .

HẾT

Ngày đăng: 10/04/2023, 08:47