1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (751)

4 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông Mễ Nhiêu
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ Nhiêu
Định dạng
Số trang 4
Dung lượng 124,84 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích củ[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC =

√ 3a2b

√ 3ab2

12 .

C VS.ABC = a

2

q

b2− √3a2

√ 3b2− a2

Câu 2 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 3 Hàm số nào sau đây không có cực trị?

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

Câu 5 Cho số thực dươngm Tính I = Rm

0

dx

x2+ 3x + 2 theo m?

A I = ln(m+ 2

m+ 1). B I = ln(

2m+ 2

m+ 2 ). C I = ln(

m+ 1

m+ 2). D I = ln(

m+ 2 2m+ 2).

Câu 6 Hàm số nào sau đây đồng biến trên R?

Câu 7 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3

2, ((ℵ) có đỉnh thuộc (S ) và đáy

là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất

A. 4

Câu 8 Công thức nào sai?

Câu 9 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng

Câu 10 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho đồng biến trên khoảng (1; 4).

B Hàm số đã cho đồng biến trên khoảng (−∞; 3).

C Hàm số đã cho nghịch biến trên khoảng (3;+∞)

D Hàm số đã cho nghịch biến trên khoảng (1; 4).

Câu 11 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?

A M(0 ; 0 ; 2) B Q(4 ; 4 ; 2) C N(1 ; 1 ; 7) D P(4 ; −1 ; 3).

Trang 2

Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2+ (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?

A (P) không cắt mặt cầu (S ) B (P) đi qua tâm mặt cầu (S ).

C (P) tiếp xúc mặt cầu (S ) D (P) cắt mặt cầu (S ).

Câu 13 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Câu 14 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 15 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng

Câu 16 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A 5x5+ sin x + C B x5+ sin x + C C 5x5− sin x+ C D x5− sin x+ C

Câu 17 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 18 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là −3 và phần ảo là−2 B Phần thực là 3 và phần ảo là 2i.

C Phần thực là3 và phần ảo là 2 D Phần thực là−3 và phần ảo là −2i.

Câu 19 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −11

11

29

29

13.

Câu 20 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 21 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 22 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 23 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z.

Câu 24 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 25 Với mọi số phức z, ta có |z+ 1|2bằng

A |z|2+ 2|z| + 1 B z2+ 2z + 1 C z · z+ z + z + 1 D z+ z + 1

Câu 26 Cho hàm số y= f (x) có đạo hàm f′

(x) = (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 27 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Trang 3

Câu 28 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 5 + 2t

y= 5 + 3t

z= −1 + t

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

Câu 29 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 30 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16π

16

16π

16

15.

Câu 31 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; −2; 3) B (−1; 2; 3) C (1; 2; −3) D (−1; −2; −3).

Câu 32 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (2; 4; 6) B (1; 2; 3) C (−2; −4; −6) D (−1; −2; −3).

Câu 33 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

11

3 .

Câu 34 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1

2. B |w|min= 2 C |w|min = 1 D |w|min = 3

2.

Câu 35 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 4

√ 5

√ 6

√ 2

√ 2

3 .

Câu 36 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A 3 < |z| < 5 B. 3

2 < |z| < 3 C. 1

2 < |z| < 2 D. 5

2 < |z| < 4

Câu 37 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 1

Câu 38 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 39 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 40 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Trang 4

Câu 41 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2

√ 2

3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2

Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 0;1

4

!

4;

5 4

!

4;+∞

!

2;

9 4

!

Câu 43 Cho hàm số có bảng biến thiên:

Khẳng định nào sau đây là đúng?

A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại

C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại

Câu 44 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= 3

5 −

6

5+ 27

5−

27

5 + 6

5i.

Câu 45 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

Câu 46 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Câu 47 Số phức z= 2 − 3i có phần ảo là

Câu 48 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt

A −4 < m < −3 B −4 ≤ m < −3 C −4 < m ≤ −3 D m > −4.

Câu 49 Biết F(x)= x2

là một nguyên hàm của hàm số f (x) trên R Giá trị của

3

R

1

[1+ f (x)]dx bằng

A. 32

26

Câu 50 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?

A V = 32

HẾT

Ngày đăng: 10/04/2023, 08:47