Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x = 1 + 2ty = 2 +[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
Câu 2 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= x4+ 2x2+ 1 B y= −x4+ 1 C y= −x4+ 2x2+ 1 D y = x4+ 1
Câu 3 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A. 1
2
1
6.
Câu 4 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
2.
Câu 5 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= −3 B f (−1)= 3 C f (−1)= −5 D f (−1)= −1
Câu 6 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
9.
Câu 7 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
A. a
√
3
a√3
a√2
√ 3
Câu 8 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
A.R f(2x − 1)dx= 2F(2x − 1) + C B. R f(2x − 1)dx = 2F(x) − 1 + C
2F(2x − 1)+ C
Câu 9 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?
A (P) cắt mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ).
C (P) không cắt mặt cầu (S ) D (P) đi qua tâm mặt cầu (S ).
Câu 10 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 11 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 12 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 13 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x ≥ log5(x+ y2)?
Trang 2Câu 14 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 15 Cho hàm số y= f (x) có đồ thị của y = f′
(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Câu 16 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 17 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với
a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?
Câu 18 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng
T = |z1|+ |z2|+ |z3|+ |z4|
Câu 19 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= √73 B |w|= √5 C |w|= 3√5 D |w|= 5
Câu 20 Tất cả các căn bậc hai của số phức z= 15 − 8i là:
A 4 − i và −4+ i B 4+ i và −4 + i C 5 − 2i và −5+ 2i D 4 − i và 2+ 3i
Câu 21 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
Câu 22 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là
A m < 0 hoặc m > 3
4. B m ≥ 0. C 0 < m <
3
4. D 0 ≤ m <
3
4.
Câu 23 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của
số phức w= z2+ 2z bằng bao nhiêu?
A |w|= 5√13 B |w|= √13 C |w|= √37 D |w|= 5
Câu 24 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Câu 25 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?
A. 7
7
3
3
4.
Câu 26 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
3πrl2
Câu 27 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 28 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1 = (−1; 1; 1) B.→−n3 = (1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n2 = (1; −1; 1)
Trang 3Câu 29 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
√ 2
4 a
√ 2
2 a
√ 2
6 a
3
Câu 30 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 31 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 32 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 33 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 4√13 B T = 2
√ 85
√ 97
Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
4;
5
4
!
2;
9 4
!
4
!
4;+∞
!
Câu 38 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 39 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 40 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 41 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1
z2
= 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
Trang 4
A. √1
3√2
√ 2
Câu 42 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 1
2 < |z| < 3
2. B 2 < |z| <
5
5
2 < |z| < 7
3
2 < |z| < 2
Câu 43 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= 1 và x = 2 B y= 1 và x = −1 C y= −1 và x = 2 D y= 2 và x = 1
Câu 44 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A x − 2y − 2z − 4= 0 B x+ 2y + 2z + 8 = 0
C −x+ 2y + 2z + 4 = 0 D 3x − 4y+ 6z + 34 = 0
Câu 45 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (−∞; −3] ∪ [3; +∞) B (0; 3] C (−∞; 3] D [−3; 3].
Câu 46 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; −3; 4) B.→−n = (−2; 3; 1) C.→−n = (−2; 3; 4) D.→−n = (2; 3; −4)
Câu 47 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 48 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x+ 4)2+ (y − 8)2 = 20 B (x − 4)2+ (y + 8)2 = 20
C (x+ 4)2+ (y − 8)2 = 2√5 D (x − 4)2+ (y + 8)2 = 2√5
Câu 49 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln x C y′ = 2023x
ln 2023 D y′ = x.2023x−1
Câu 50 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A m < −1 B −1 ≤ m < 0 C m > 1 D −1 ≤ m ≤ 0.
HẾT