Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x − 1 1 = y + 2 −[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x − y − 2z = 0 B (P) : x − y + 2z = 0 C (P) : x − 2y − 2 = 0 D (P) : x + y + 2z = 0.
Câu 2 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A. 2π
√
2.a2
π√3.a2
π√2.a2
√ 3.a2
Câu 3 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 4 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 2
3x − 1
ln 2
(3x − 1) ln 2. C y
(3x − 1) ln 2. D y
3x − 1
ln 2
Câu 5 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Không có tiệm cận.
B Không có tiệm cận ngang và có một tiệm cận đứng.
C Có một tiệm cận ngang và không có tiệm cận đứng.
D Có một tiệm cận ngang và một tiệm cận đứng .
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(0; 1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; −1; 2).
Câu 7 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
a√5
√
√ 15
Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 9 Cho hàm số y= f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng
Câu 10 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích
toàn phần St p của hình nón đó
A St p = 5
4πa2 B St p = 3
4πa2 C St p = 1
4πa2 D St p = πa2
Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x − 1)2+ (y − 4)2+ (z + 2)2= 40 B (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40
C (x − 1)2+ (y − 4)2+ (z + 2)2= 10 D (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40
Trang 2Câu 12 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là
Câu 13 Cho khối lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 3
3 a Tính thể tích của khối lăng trụ ABC.A
′
B′C′
A. a
3√
2
a3
a3√2
a3
2.
Câu 14 Cho hàm số y= f (x) có đồ thị của y = f′
(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Câu 15 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
A P = 1
4.
Câu 16 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (2 ; −3 ; 1) B (2
3; −
4
3;
5
10
2 ; −
4
3;
5
8
3; −
2
3;
7
3).
Câu 17 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là
A 0 ≤ m < 3
4. B 0 < m <
3
4. C m ≥ 0. D m < 0 hoặc m >
3
4.
Câu 18 Biết z0 là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 20 = 0 Trên mặt phẳng tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w= (1 + i)z0− 2z0 ?
Câu 19 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2− (5 − 2i)z+ 9 − 7i = 0 B z2− (1+ 4i)z + 9 − 7i = 0
C z2+ (5 − 2i)z − 9 + 7i = 0 D z2+ (1 + 4i)z − 9 + 7i = 0
Câu 20 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?
A |w|= √3 B |w|= √2 C |w|= √5 D |w|= 2√2
Câu 21 Tất cả các căn bậc hai của số phức z= 15 − 8i là:
A 4 − i và 2+ 3i B 4+ i và −4 + i C 4 − i và −4+ i D 5 − 2i và −5+ 2i
Câu 22 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của
số phức w= z2+ 2z bằng bao nhiêu?
A |w|= 5√13 B |w|= √13 C |w|= √37 D |w|= 5
Câu 23 Căn bậc hai của -4 trong tập số phức là.
Câu 24 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng
T = |z1|+ |z2|+ |z3|+ |z4|
Câu 25 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0là
Trang 3Câu 26 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x −3
x −1. B y= x2− 4x+ 1 C y= x3− 3x − 5 D y= x4− 3x2+ 2
Câu 27 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 28 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2bằng
Câu 29 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 31 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 32 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 33 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
√ 3
√ 2
2√3
3 a.
Câu 34 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
Câu 35 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
Câu 36 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 2 C |w|min = 1 D |w|min = 3
2.
Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 38 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 42 B P= (|z| − 2)2 C P = (|z| − 4)2 D P =
|z|2− 22
Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 4√13 B T = 2
√ 97
√ 85
Trang 4Câu 41 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 42 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A 3 < |z| < 5 B. 1
2 < |z| < 2 C. 3
2 < |z| < 3 D. 5
2 < |z| < 4
Câu 43 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x − 4)2+ (y + 8)2 = 2√5 B (x+ 4)2+ (y − 8)2 = 2√5
C (x − 4)2+ (y + 8)2 = 20 D (x+ 4)2+ (y − 8)2 = 20
Câu 44 Cho hàm số y= f (x) có đạo hàm f′(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(5; 5; 0) B M(−2; −6; 4) C M(−2; 6; −4) D M(2; −6; 4).
Câu 46 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD= a
√
3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 47 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 48 Biết
3
R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2
[ f (x)+ g(x)]dx bằng
Câu 49 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
A C3
30
Câu 50 Thể tích khối lập phương có cạnh 3a là:
HẾT