1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (708)

4 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Mễ
Định dạng
Số trang 4
Dung lượng 124,75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O

; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1

V2

A. V1

V2

= 1

V1

V2

V2

= 1

V1

V2

= 1

2.

Câu 2 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 3 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

A. 3

3

√ 3

2)

Câu 4 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 5 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

b)= ln a

ln b.

C ln(ab2)= ln a + (ln b)2

D ln(ab2)= ln a + 2 ln b

Câu 6 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 7 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√

ba3

A. m

4m2− 3

m2− 3

m2− 12

Câu 8 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

√ 5

a√15

a√5

6 .

Câu 9 Đạo hàm của hàm số y= (2x + 1)−

1

3 trên tập xác định là

A −1

3(2x+ 1)−

4

1

3 ln(2x+ 1)

C −2

3(2x+ 1)−

4

1

3 ln(2x+ 1)

Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.

Phương trình của (S ) là

A (x − 1)2+ (y − 4)2+ (z + 2)2= 40 B (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40

C (x − 1)2+ (y − 4)2+ (z + 2)2= 10 D (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40

Trang 2

Câu 11 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac

nhau

A A3

10

Câu 12 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho đồng biến trên khoảng (1; 4).

B Hàm số đã cho đồng biến trên khoảng (−∞; 3).

C Hàm số đã cho nghịch biến trên khoảng (3;+∞)

D Hàm số đã cho nghịch biến trên khoảng (1; 4).

Câu 13 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

Câu 14 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

3 = z+ 2

−2 Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

A. 2

5

53

Câu 15 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 16 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Câu 17 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là

Câu 18 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của

số phức w= z2+ 2z bằng bao nhiêu?

A |w|= √13 B |w|= 5 C |w|= √37 D |w|= 5√13

Câu 19 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?

A Phương trình đã cho có tổng hai nghiệm bằng −b

a .

B Phương trình đã cho có tích hai nghiệm bằng c

a.

C Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm

D Phương trình đã cho luôn có nghiệm.

Câu 20 Căn bậc hai của -4 trong tập số phức là.

Câu 21 Tất cả các căn bậc hai của số phức z= 15 − 8i là:

A 4 − i và 2+ 3i B 4+ i và −4 + i C 5 − 2i và −5+ 2i D 4 − i và −4+ i

Câu 22 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?

Câu 23 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức

có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?

A |w|= √73 B |w|= 3√5 C |w|= 5 D |w|= √5

Trang 3

Câu 24 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?

Câu 25 Biết z là số phức thỏa mãn z2 + 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?

A |w|= √3 B |w|= √5 C |w|= √2 D |w|= 2√2

Câu 26 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

Câu 27 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

2 a

√ 2

6 a

√ 2

4 a

3

Câu 28 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 29 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 30 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 5 + 2t

y= 5 + 3t

z= −1 + t

Câu 31 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 32 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; 2; 3) B (−1; −2; −3) C (1; 2; −3) D (1; −2; 3).

Câu 33 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 1

4;

5

4

!

2;

9 4

!

4

!

4;+∞

!

Câu 35 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A 3 < |z| < 5 B. 5

2 < |z| < 4 C. 3

2 < |z| < 3 D. 1

2 < |z| < 2

Câu 36 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

√ 2

1

2.

Trang 4

Câu 37 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

2.

Câu 38 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 40 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

Câu 41 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 5

2 < |z| < 7

3

2 < |z| < 2 C 2 < |z| < 5

1

2 < |z| < 3

2.

Câu 42 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min = 1 B |w|min = 3

2. C |w|min = 1

2. D |w|min= 2

Câu 43 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : y + z − 1 = 0 B (P) : x − 2z + 5 = 0 C (P) : y − z + 2 = 0 D (P) : x − 2y + 1 = 0.

Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm

tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→

A M(2; −6; 4) B M(−2; −6; 4) C M(−2; 6; −4) D M(5; 5; 0).

Câu 45 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 46 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= −6

5 −

27

5 + 6

5+ 27

5 −

6

5i.

Câu 47 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng

Câu 48 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

A x − 2y − 2z − 4= 0 B 3x − 4y+ 6z + 34 = 0

C −x+ 2y + 2z + 4 = 0 D x+ 2y + 2z + 8 = 0

Câu 49 Với a là số thực dương tùy ý, log5(5a) bằng

Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (2; −3; 4) B.→−n = (−2; 3; 1) C.→−n = (−2; 3; 4) D.→−n = (2; 3; −4)

HẾT

Ngày đăng: 10/04/2023, 14:54

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN