Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
Câu 2 Hàm số nào sau đây đồng biến trên R?
C y= √x2+ x + 1 − √x2− x+ 1 D y= tan x
Câu 3 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
R
y= 1
y= −1
2. D minR
y= 0
Câu 4 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5 − 1+ 1
ln 5.
C y= x
5 ln 5+ 1 − 1
5 ln 5 −
1
ln 5.
Câu 5 Cho hình hộp ABCD.A′
B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′
A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′
D′theo a
Câu 6 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
3 −
ln 2
2 . B F(
π
4)= π
3 + ln 2
2 . C F(
π
4)= π
4 −
ln 2
2 . D F(
π
4)= π
4 + ln 2
2 .
Câu 7 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?
A V = 10π
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?
Câu 9 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?
A P(4 ; −1 ; 3) B Q(4 ; 4 ; 2) C N(1 ; 1 ; 7) D M(0 ; 0 ; 2).
Câu 10 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 11 Cho hàm số f (x) liên tục trên R và
2
R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Câu 12 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua
Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Trang 2Câu 13 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng
Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x − 1)2+ (y − 4)2+ (z + 2)2 = 40 B (x+ 1)2+ (y + 4)2+ (z − 2)2= √40
C (x − 1)2+ (y − 4)2+ (z + 2)2 = 10 D (x+ 1)2+ (y + 4)2+ (z − 2)2= 40
Câu 15 Tính đạo hàm của hàm số y= 5x
A y′ = 5x B y′ = 5x
′ = x.5x−1 D y′ = 5xln 5
Câu 16 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 17 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z+ z = 2bi B z − z = 2a C z · z= a2− b2 D |z2|= |z|2
Câu 18 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 19 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 5
√
34
√ 34
Câu 20 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 21 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 22 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 23 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số thực không âm Câu 24 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
A −22016 B −21008+ 1 C −21008 D 21008
Câu 25 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Chỉ có số 1 B C.Truehỉ có số 0 C 0 và 1 D Không có số nào Câu 26 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x3− 3x − 5 C y= x4− 3x2+ 2 D y= x −3
x −1.
Câu 27 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
11
Trang 3Câu 28 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
A. 8
Câu 29 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′
(x)= −1
(x)= 1
′
(x)= 2
x2
Câu 30 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 31 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
A. 1
4
9
18
35.
Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 33 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 34 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 35 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 22 B P=
|z|2− 42 C P = (|z| − 2)2
D P = (|z| − 4)2
Câu 37 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 38 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 39 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
2
√ 3
Câu 40 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 3
1
Câu 41 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1 B |w|min= 1
2. C |w|min = 3
2. D |w|min = 2
Trang 4Câu 42 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
3√2
√ 2
Câu 43 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln 2023 B y′ = x.2023x−1 C y′ = 2023x
ln x D y′ = 2023x
Câu 44 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là
Câu 45 Tìm nguyên hàm của hàm số f (x)= cos 3x
Câu 46 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 47 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A −1 ≤ m < 0 B m < −1 C −1 ≤ m ≤ 0 D m > 1.
Câu 48 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A −x+ 2y + 2z + 4 = 0 B x − 2y − 2z − 4= 0
C 3x − 4y+ 6z + 34 = 0 D x+ 2y + 2z + 8 = 0
Câu 49 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.
Câu 50 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
A V = 2a3 B V = a3
HẾT