1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (804)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 123,83 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx −[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A 0 < m < 1

1

3. D Không tồn tại m.

Câu 2 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1

V2

A. V1

V2

= 1

V1

V2

= 1

V1

V2

= 1

V1

V2

= 1

Câu 3 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 4 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A. π.a3

4π√2.a3

π√2.a3

2π.a3

Câu 5 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − 2y − 2 = 0 B (P) : x − y + 2z = 0 C (P) : x + y + 2z = 0 D (P) : x − y − 2z = 0.

Câu 6 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(a

b)= ln a

C ln(ab2)= ln a + 2 ln b D ln(ab2)= ln a + (ln b)2

Câu 7 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 8 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 32π

3 .

Câu 9 Tập nghiệm của bất phương trình 52x +3> −1 là

Câu 10 Cho hai số phức u, v thỏa mãn

u

= v

= 10 và

3u − 4v

= 50 Tìm giá trị lớn nhất của biểu thức

4u+ 3v − 8 + 6i

Câu 11 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P= 1

14.

Trang 2

Câu 12 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= 1+ x

2x − 2

−2x+ 3

x −2 .

Câu 13 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; −1) B.→−n = (1; 2; 3) C.→−n = (1; −2; 3) D.→−n = (1; 3; −2)

Câu 14 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn

phương án dưới đây Hỏi hàm số đó là hàm số nào?

Câu 15 Cho hàm số y= f (x) có đồ thị của y = f′(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Câu 16 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích

toàn phần St p của hình nón đó

A St p = 1

4πa2 B St p = 3

4πa2 C St p = 5

4πa2 D St p = πa2

Câu 17 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng

A −3

3

1

1

2.

Câu 18 Biết z0 là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 20 = 0 Trên mặt phẳng tọa

độ, điểm nào dưới đây là điểm biểu diễn của số phức w= (1 + i)z0− 2z0 ?

Câu 19 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là

A 0 ≤ m < 3

4. B 0 < m <

3

4. C m < 0 hoặc m >

3

4. D m ≥ 0.

Câu 20 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?

Câu 21 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?

A z2− (1+ 4i)z + 9 − 7i = 0 B z2+ (1 + 4i)z − 9 + 7i = 0

C z2− (5 − 2i)z+ 9 − 7i = 0 D z2+ (5 − 2i)z − 9 + 7i = 0

Câu 22 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu

a − bbằng

Câu 23 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của

số phức w= z2+ 2z bằng bao nhiêu?

A |w|= √13 B |w|= √37 C |w|= 5√13 D |w|= 5

Câu 24 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức

có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?

A |w|= √5 B |w|= 3√5 C |w|= 5 D |w|= √73

Câu 25 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?

A −3

7

3

7

4.

Trang 3

Câu 26 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 27 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 28 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 29 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 30 NếuR4

−1 f(x)= 2 và R4

−1g(x)= 3 thì R4

−1[ f (x)+ g(x)] bằng

Câu 31 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A. 2

3

√ 2

√ 3

3 a.

Câu 32 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 33 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′

(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng

A. 1

4

1

5

2.

Câu 34 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 35 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 36 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

5.

Câu 37 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 38 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Trang 4

Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 0;1

4

!

4;

5 4

!

4;+∞

!

2;

9 4

!

Câu 41 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

2.

Câu 42 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

Câu 43 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt

A −4 ≤ m < −3 B −4 < m ≤ −3 C m > −4 D −4 < m < −3.

Câu 44 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 45 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M

Câu 46 Cho cấp số nhân (un) với u1= −1

2; u7= −32 Tìm q?

2.

Câu 47 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : y − z + 2 = 0 B (P) : y + z − 1 = 0 C (P) : x − 2y + 1 = 0 D (P) : x − 2z + 5 = 0.

Câu 48 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ

Câu 49 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A m < −1 B −1 ≤ m < 0 C m > 1 D −1 ≤ m ≤ 0.

Câu 50 Thể tích khối lập phương có cạnh 3a là:

HẾT

Ngày đăng: 10/04/2023, 14:45