1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (804)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Mễ
Định dạng
Số trang 4
Dung lượng 126,37 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2 + x +[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm

số y= 3x2+ log3x+ m là:

Câu 2 Hàm số nào sau đây không có cực trị?

Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > 2e B m ≥ e−2 C m > e2 D m > 2.

Câu 4 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3

2, ((ℵ) có đỉnh thuộc (S ) và đáy

là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất

A. √2π

4√3π

Câu 5 Biết F(x) là một nguyên hàm của hàm số f (x)= x

cos2x và F(

π

3)= √π

3 Tìm F(

π

4)

A F(π

4)= π

3 + ln 2

2 . B F(

π

4)= π

3 −

ln 2

2 . C F(

π

4)= π

4 −

ln 2

2 . D F(

π

4)= π

4 + ln 2

2 .

Câu 6 Kết quả nào đúng?

A.R sin2xcos x= sin3x

C.R sin2xcos x= cos2x sin x + C D.R sin2xcos x= −cos2x sin x + C

Câu 7 Cho lăng trụ đều ABC.A

B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A.

5a

√ 3a

a

√ 5

5

Câu 8 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếux > 2 thìy < −15 B Nếu 0 < x < π thì y > 1 − 4π2

C Nếu 0 < x < 1 thì y < −3 D Nếux= 1 thì y = −3

Câu 9 Cho hàm số y= f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Câu 10 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng

(S BD) theo a

A. a

√ 2

2 .

Câu 11 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính e

2

R

1

f(ln x)

Trang 2

Câu 12 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 13 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?

Câu 14 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?

A M(0 ; 0 ; 2) B Q(4 ; 4 ; 2) C P(4 ; −1 ; 3) D N(1 ; 1 ; 7).

Câu 15 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2

−1 = x −1

A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là

A (10

2 ; −

4

3;

5

2

3; −

4

3;

5

3). C (2 ; −3 ; 1). D (

8

3; −

2

3;

7

3).

Câu 16 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?

Câu 17 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 18 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 19 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 20 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 21 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 22 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A |z2|= |z|2 B z+ z = 2bi C z · z= a2− b2 D z − z= 2a

Câu 23 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= 1 B |z1+ z2|= √5 C |z1+ z2|= 5 D |z1+ z2|= √13

Câu 24 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 25 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 26 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 27 Phần ảo của số phức z= 2 − 3i là

Câu 28 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

A. 11

1

Trang 3

Câu 29 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′

(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng

A. 1

1

4

5

2.

Câu 30 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A. 2

3

√ 2

√ 3

3 a.

Câu 31 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A N(2; 1; 2) B P(1; 2; 3) C M(2; −1; −2) D Q(1; 2; −3).

Câu 32 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n2= (1; −1; 1) B.→−n3 = (1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n1 = (−1; 1; 1)

Câu 33 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 35 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 3

2 < |z| < 3 B 3 < |z| < 5 C. 5

2 < |z| < 4 D. 1

2 < |z| < 2

Câu 36 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| > 2 B. 3

2 ≤ |z| ≤ 2. C |z| <

1

1

2 < |z| < 3

2.

Câu 37 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

A. 3

2

1

√ 2

Câu 38 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 7

√ 2

√ 5

√ 6

√ 2

Câu 39 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 40 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 41 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

Trang 4

A. 5

2 < |z| < 7

2. B 2 < |z| <

5

1

2 < |z| < 3

3

2 < |z| < 2

Câu 42 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

1

√ 2

3 .

Câu 43 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 2 và x = 1 B y= 1 và x = −1 C y= 1 và x = 2 D y= −1 và x = 2

Câu 44 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?

A V = 32

5 .

Câu 45 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

A x − 2y − 2z − 4= 0 B 3x − 4y+ 6z + 34 = 0

Câu 46 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= x3− 3x2+ 2 B y= −x4+ 2x2+ 2 C y= −x3+ 3x2+ 2 D y= x4− 2x2+ 2

Câu 47 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

−1

Câu 48 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi

có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 49 Cho hàm số f (x) Biết f (0)= 4 và f′(x)= 2 sin2x+ 1, ∀x ∈ R, khi đó

π 4 R

0

f(x) bằng

A. π2− 4

Câu 50 Thể tích khối lập phương có cạnh 3a là:

HẾT

Ngày đăng: 10/04/2023, 08:47