Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0;[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(1; 1; 2) B I(0; −1; 2) C I(0; 1; 2) D I(0; 1; −2).
Câu 2 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung
A m < 1
3. B 0 < m <
1
3. C m < 0. D Không tồn tại m.
Câu 3 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng (−3; 1).
C Hàm số nghịch biến trên khoảng (−∞; −3) D Hàm số nghịch biến trên khoảng (−3; 1).
Câu 4 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho
có diện tích lớn nhất bằng?
A. 3
√
3
√ 3
2)
Câu 5 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
3.
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(1; 2; 0) B A(0; 2; 3) C A(0; 0; 3) D A(1; 0; 3).
Câu 7 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a
3
6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho
Câu 8 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= x4+ 2x2+ 1 B y= −x4+ 1 C y= x4+ 1 D y= −x4+ 2x2+ 1
Câu 9 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac
nhau
A C3
Câu 10 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là
Câu 11 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng
(S BD) theo a
√ 2
a
2.
Câu 12 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1 = 4S2thì giá trị k thuộc khoảng nào sau đây?
A (3, 7; 3, 9)· B (3, 1; 3, 3)· C (3, 5; 3, 7)· D (3, 3; 3, 5)·.
Trang 2Câu 13 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng
Câu 14 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (8
3; −
2
3;
7
2
3; −
4
3;
5
3). C (2 ; −3 ; 1). D (
10
2 ; −
4
3;
5
3).
Câu 15 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Câu 16 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là
A x5+ sin x + C B x5− sin x+ C C 5x5+ sin x + C D 5x5− sin x+ C
Câu 17 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= 3√5 B |w|= √5 C |w|= √73 D |w|= 5
Câu 18 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với
a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?
Câu 19 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?
A Phương trình đã cho luôn có nghiệm.
B Phương trình đã cho có tích hai nghiệm bằng c
a.
C Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm
D Phương trình đã cho có tổng hai nghiệm bằng −b
a .
Câu 20 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu
a − bbằng
Câu 21 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là
A 0 < m < 3
4. B 0 ≤ m <
3
4. C m ≥ 0. D m < 0 hoặc m >
3
4.
Câu 22 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?
A |w|= √5 B |w|= √3 C |w|= 2√2 D |w|= √2
Câu 23 Tất cả các căn bậc hai của số phức z= 15 − 8i là:
A 4 − i và −4+ i B 4 − i và 2+ 3i C 4+ i và −4 + i D 5 − 2i và −5+ 2i
Câu 24 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của
số phức w= z2+ 2z bằng bao nhiêu?
A |w|= 5√13 B |w|= √37 C |w|= 5 D |w|= √13
Câu 25 Căn bậc hai của -4 trong tập số phức là.
Câu 26 Tập nghiệm của bất phương trình 2x +1< 4 là
Trang 3Câu 27 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
2 + C
C.R f(x)= sinx + x2
Câu 28 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 2
Câu 29 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln3
2
Câu 30 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A M(2; −1; −2) B P(1; 2; 3) C N(2; 1; 2) D Q(1; 2; −3).
Câu 31 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 32 NếuR−14 f(x)= 2 và R4
−1g(x)= 3 thì R4
−1[ f (x)+ g(x)] bằng
Câu 33 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 1
1
5
4
3.
Câu 34 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A. 1
1
√ 2
3 .
Câu 35 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
Câu 36 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
3
2.
Câu 37 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 4
√ 5
√ 6
√ 2
√ 2
3 .
Câu 38 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 39 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| > 2 B. 3
1
2 < |z| < 3
2. D |z| <
1
2.
Trang 4Câu 40 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A 2 < |z| < 5
5
2 < |z| < 7
1
2 < |z| < 3
3
2 < |z| < 2
Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 42 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là một số thực không dương B Phần thực của z là số âm.
Câu 43 Thể tích khối lập phương có cạnh 3a là:
Câu 44 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : x − 2y + 1 = 0 B (P) : x − 2z + 5 = 0 C (P) : y − z + 2 = 0 D (P) : y + z − 1 = 0.
Câu 45 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần
lượt được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Câu 46 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
3
1
√ 15
√ 3
5 .
Câu 47 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
5 .
Câu 48 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 49 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?
Câu 50 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
HẾT