1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (897)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 124,42 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞;−2] và[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4;+∞)

D [7

4; 2]S[22;+∞)

Câu 2 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 3

C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1

3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

Câu 3 Tính nguyên hàmR cos 3xdx

A −3 sin 3x+ C B 3 sin 3x+ C C −1

3sin 3x+ C

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x + y + 2z = 0 B (P) : x − y − 2z = 0 C (P) : x − 2y − 2 = 0 D (P) : x − y + 2z = 0.

Câu 5 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

A. a

5

√ 5

a√15

Câu 6 Cho hàm số f (x) thỏa mãn f′′

(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= −3 B f (−1)= 3 C f (−1)= −5 D f (−1)= −1

Câu 7 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab)= ln a ln b B ln(ab2)= ln a + (ln b)2

C ln(a

b)= ln a

2)= ln a + 2 ln b

Câu 8 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= x4+ 2x2+ 1 B y= −x4+ 1 C y= −x4+ 2x2+ 1 D y = x4+ 1

Câu 9 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.

Phương trình của (S ) là

A (x+ 1)2+ (y + 4)2+ (z − 2)2= 40 B (x − 1)2+ (y − 4)2+ (z + 2)2 = 10

C (x − 1)2+ (y − 4)2+ (z + 2)2= 40 D (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40

Câu 10 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?

Câu 11 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng

Câu 12 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?

A f (x)= −cos 3x

3 . B f (x)= −3 cos 3x C f (x)= 3 cos 3x D f (x)= cos 3x

Trang 2

Câu 13 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính

e 2

R

1

f(ln x)

Câu 14 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P = 1

55.

Câu 15 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

2.

Câu 16 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng

Câu 17 Biết phương trình z2+ mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo Khi đó tham số thực

mgần giá trị nào nhất trong các giá trị sau?

Câu 18 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0

Khi đó tổng phần thực và phần ảo của z0là

Câu 19 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?

A |w|= √3 B |w|= 2√2 C |w|= √2 D |w|= √5

Câu 20 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu

a − bbằng

Câu 21 Căn bậc hai của -4 trong tập số phức là.

A 2 hoặc -2 B không tồn tại C 2i hoặc -2i D 4i.

Câu 22 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?

A z2+ (1 + 4i)z − 9 + 7i = 0 B z2+ (5 − 2i)z − 9 + 7i = 0

C z2− (1+ 4i)z + 9 − 7i = 0 D z2− (5 − 2i)z+ 9 − 7i = 0

Câu 23 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2

bằng bao nhiêu?

A T = 13

√ 13

Câu 24 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là

Câu 25 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với

a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?

Câu 26 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

A ln(6a2) B ln2

3

2.

Câu 27 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 24

5

Trang 3

Câu 28 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 29 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 30 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

2 + C

C.R f(x)= sinx + x2

Câu 31 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?

Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 33 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn

z1

+

z2

= 2?

Câu 34 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 35 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 36 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 37 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

1

√ 2

3 .

Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P= (|z| − 2)2

|z|2− 22 C P =

|z|2− 42 D P = (|z| − 4)2

Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Trang 4

Câu 40 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

Câu 41 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M= |z + 1 − i| là

Câu 42 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 .

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3.

Câu 43 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Câu 44 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD= a

3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 45 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A. 1

√ 3

√ 15

√ 3

5 .

Câu 46 Đường thẳng (∆) : x −1

−1 không đi qua điểm nào dưới đây?

A A(−1; 2; 0) B (−1; −3; 1) C (3; −1; −1) D (1; −2; 0).

Câu 47 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của

3

R

1

[1+ f (x)]dx bằng

A. 32

26

3 .

Câu 48 Tập nghiệm của bất phương trình log3(10 − 3x+1) ≥ 1 − x chứa mấy số nguyên

Câu 49 Số phức z= 2 − 3i có phần ảo là

Câu 50 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng

HẾT

Ngày đăng: 10/04/2023, 14:38