1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (751)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông Mễ Nhiêu
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ Nhiêu
Định dạng
Số trang 4
Dung lượng 124,33 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y = 0; x = 2 Tính thể[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 32π

3.

Câu 2 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)

Câu 3 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(1; 0; 3) B A(0; 2; 3) C A(1; 2; 0) D A(0; 0; 3).

Câu 4 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

A.R f(2x − 1)dx= 2F(2x − 1) + C B. R f(2x − 1)dx = F(2x − 1) + C

C.R f(2x − 1)dx= 1

Câu 5 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

3.

Câu 6 Tìm nghiệm của phương trình 2x = (√3)x

Câu 7 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(1; 5; 3) B C(5; 9; 5) C C(−3; 1; 1) D C(3; 7; 4).

Câu 9 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

2.

Câu 10 Nếu

6

R

1

f(x)= 2 vàR6

1

g(x)= −4 thìR6

1

( f (x)+ g(x)) bằng

Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng

MN có phương trình tham số là

Câu 12 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Trang 2

Câu 13 Cho hai số phức u, v thỏa mãn

u =

v = 10 và

3u − 4v

= 50 Tìm giá trị lớn nhất của biểu thức

4u+ 3v − 8 + 6i

Câu 14 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích

toàn phần St p của hình nón đó

A St p = 1

4πa2 B St p = 3

4πa2

Câu 15 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho đồng biến trên khoảng (1; 4).

B Hàm số đã cho nghịch biến trên khoảng (1; 4).

C Hàm số đã cho nghịch biến trên khoảng (3;+∞)

D Hàm số đã cho đồng biến trên khoảng (−∞; 3).

Câu 16 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 17 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?

Câu 18 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?

Câu 19 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với

a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?

Câu 20 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của

số phức w= z2+ 2z bằng bao nhiêu?

A |w|= 5√13 B |w|= 5 C |w|= √37 D |w|= √13

Câu 21 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng

A −3

1

3

1

2.

Câu 22 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0

Khi đó tổng phần thực và phần ảo của z0là

Câu 23 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?

A z2+ (1 + 4i)z − 9 + 7i = 0 B z2+ (5 − 2i)z − 9 + 7i = 0

C z2− (1+ 4i)z + 9 − 7i = 0 D z2− (5 − 2i)z+ 9 − 7i = 0

Câu 24 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức

có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?

A |w|= √5 B |w|= √73 C |w|= 5 D |w|= 3√5

Câu 25 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là

A m ≥ 0 B 0 ≤ m < 3

4. C 0 < m <

3

4. D m < 0 hoặc m >

3

4.

Câu 26 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?

Trang 3

Câu 27 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

A ln2

3

Câu 28 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 29 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n1= (−1; 1; 1) B.→−n2 = (1; −1; 1) C.→−n3 = (1; 1; 1) D.→−n4 = (1; 1; −1)

Câu 30 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 31 Có bao nhiêu số nguyên x thỏa mãn log3x

2− 16

343 < log7x2− 16

Câu 32 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

3

√ 2

2√3

√ 2a

Câu 33 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

2;

9 4

!

4;

5 4

!

4

!

Câu 35 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

A |A| > 1 B |A| < 1 C |A| ≤ 1 D |A| ≥ 1.

Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3.

Câu 38 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 39 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Trang 4

Câu 40 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P =

|z|2− 22 B P = (|z| − 4)2 C P= (|z| − 2)2 D P= 

|z|2− 42

Câu 42 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 43 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

3

1

√ 15

√ 3

2 .

Câu 44 Cho hàm số y= f (x) có đạo hàm f′

(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng

Câu 45 Cho lăng trụ đứng ABC.A

B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′BC)bằng

600Biết diện tích của tam giác∆A′

BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′

A V = a3√

√ 3

3 .

Câu 46 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A (0; 3] B [−3; 3] C (−∞; −3] ∪ [3; +∞) D (−∞; 3].

Câu 47 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt

phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD

A V = 3a3 B V = a3

Câu 48 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi

có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 49 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (2; −3; 4) B.→−n = (−2; 3; 4) C.→−n = (−2; 3; 1) D.→−n = (2; 3; −4)

HẾT

Ngày đăng: 10/04/2023, 14:31