1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (800)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2022 - 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 121,21 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x − 1 1 = y + 2 −1 = z 2 V[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − y − 2z = 0 B (P) : x − 2y − 2 = 0 C (P) : x + y + 2z = 0 D (P) : x − y + 2z = 0.

Câu 2 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 3 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A.

2.a3

2π.a3

π√2.a3

π.a3

3 .

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(−3; 1; 1) B C(3; 7; 4) C C(5; 9; 5) D C(1; 5; 3).

Câu 5 Biết

5

R

1

dx 2x − 1 = ln T Giá trị của T là:

Câu 6 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD

A. V

V

V

V

4.

Câu 7 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 8 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= −x4+ 1 B y= −x4+ 2x2+ 1 C y = x4+ 1 D y= x4+ 2x2+ 1

Câu 9 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= −x4+ 2x2+ 2 B y= −x3+ 3x2+ 2 C y= x4− 2x2+ 2 D y= x3− 3x2+ 2

Câu 10 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm

tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→

A M(2; −6; 4) B M(−2; −6; 4) C M(−2; 6; −4) D M(5; 5; 0).

Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

A 3x − 4y+ 6z + 34 = 0 B x+ 2y + 2z + 8 = 0

C −x+ 2y + 2z + 4 = 0 D x − 2y − 2z − 4= 0

Câu 12 Cho hàm số y = f (x) có đạo hàm f′(x) = x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng

Câu 13 Hàm số y = (x + m)3+ (x + n)3− x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

−1

16.

Trang 2

Câu 14 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 15 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

3

√ 3

1

√ 15

5 .

Câu 16 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 17 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 18 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x

3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 19 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 20 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 21 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng

Câu 22 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

A ln3

Câu 23 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 1

35

Câu 24 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 25 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:

A y′ = πxπ−1 B y′ = πxπ C y′ = 1

πxπ−1 D y′ = xπ−1

Câu 26 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 5 + 2t

y= 5 + 3t

z= −1 + t

Câu 27 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 28 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

Trang 3

A. 1

18

9

4

35.

Câu 29 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 30 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 31 NếuR4

−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng

Câu 32 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 33 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 34 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 35 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 3√2 B max T = 2√10 C max T = 2√5 D max T = 3√5

Câu 36 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Câu 37 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x − y+ 4 = 0 B x+ y − 8 = 0 C x − y+ 8 = 0 D x+ y − 5 = 0

Câu 38 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z

w là

số thuần ảo thì mệnh đề nào sau đây đúng?

A Tam giác OAB là tam giác nhọn B Tam giác OAB là tam giác vuông.

C Tam giác OAB là tam giác đều D Tam giác OAB là tam giác cân.

Câu 39 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một đường thẳng B Một Parabol C Một Elip D Một đường tròn.

Câu 40 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

A.

Câu 41 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 42 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= 2 B max |z|= 3 C max |z|= 1 D max |z|= √2

Câu 43 Tính đạo hàm của hàm số y= 5x +cos3x

A y′= (1 − 3 sin 3x)5x +cos3xln 5. B y′ = 5x +cos3xln 5

C y′= (1 + 3 sin 3x)5x +cos3xln 5 D y′ = (1 − sin 3x)5x +cos3xln 5

Trang 4

Câu 44 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)

A.

x= 1 + 2t

y= −2 + 3t

z= 4 − 5t

x= 1 + 2t

y= −2 − 3t

z= 4 − 5t

x= 1 − 2t

y= −2 + 3t

z= 4 + 5t

x= −1 + 2t

y= 2 + 3t

z= −4 − 5t

Câu 46 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

4.

Câu 47 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

2

5a

√ 2

5a√3

5a√3

Câu 48 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = √ 1

x2− 1 ln 4

2(x2− 1) ln 4. C y

(x2− 1)log4e. D y

(x2− 1) ln 4.

Câu 49 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 50 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Trang 5

HẾT

Ngày đăng: 10/04/2023, 10:30

🧩 Sản phẩm bạn có thể quan tâm