LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y = ( √ π)sin 2x trên R bằng? A π B 0 C 1 D √ π Câu 2[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 2 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 3 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 4 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′
; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2
= 1
V1
V2
V2
= 1
V1
V2
2.
Câu 5 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A 0 < m < 2 B −2 < m < 2 C −2 ≤ m ≤ 2 D m= 2
Câu 6 Cho hình hộp chữ nhật ABCD.A′
B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
A. a
√
2
a√3
√
√ 3
4 .
Câu 7 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung
A m < 0 B 0 < m < 1
3. C m <
1
3. D Không tồn tại m.
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(5; 9; 5) B C(3; 7; 4) C C(−3; 1; 1) D C(1; 5; 3).
Câu 9 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A 3x − 4y+ 6z + 34 = 0 B −x+ 2y + 2z + 4 = 0
C x − 2y − 2z − 4= 0 D x+ 2y + 2z + 8 = 0
Câu 11 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của
3
R
1
[1+ f (x)]dx bằng
A. 32
26
Câu 12 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A 3x(x2+ 1)
1
4x
−1
2(x
2+ 1)
1
2(2x) 1
2
Trang 2Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 14 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 15 Cho số phức z= (1 + i)2
(1+ 2i) Số phức z có phần ảo là
Câu 16 Tính đạo hàm của hàm số y= 2023x
A y′ = x.2023x−1 B y′ = 2023x
ln 2023 D y′ = 2023x
ln x
Câu 17 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
Câu 18 Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
Câu 19 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 20 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
Câu 21 Trong không gian Oxyz, cho đường thẳng d : x−1
−1 = z +3
−2 Điểm nào dưới đây thuộc d?
A Q(1; 2; −3) B P(1; 2; 3) C M(2; −1; −2) D N(2; 1; 2).
Câu 22 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
Câu 23 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 24 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 25 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−2; −4; −6) B (−1; −2; −3) C (1; 2; 3) D (2; 4; 6).
Câu 26 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1 = (−1; 1; 1) B.→−n3 = (1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n2 = (1; −1; 1)
Câu 27 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 28 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = πxπ B y′ = xπ−1 C y′ = πxπ−1 D y′ = 1πxπ−1
Câu 29 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Trang 3Câu 30 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−2; −4; −6) B (2; 4; 6) C (1; 2; 3) D (−1; −2; −3).
Câu 31 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
√ 2
√ 2
4 a
3
Câu 32 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 33 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 1
5
4
1
4.
Câu 34 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một đường tròn B Một Elip C Một đường thẳng D Một Parabol.
Câu 35 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 36 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là
Câu 37 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 38 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x+ 1)2+ (y − 2)2 = 125 B x= 2
C (x − 5)2+ (y − 4)2 = 125 D (x − 1)2+ (y − 4)2= 125
Câu 39 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 7 B max |z|= 3 C max |z|= 4 D max |z|= 6
Câu 40 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng
A. 5π
5π
2 .
Câu 41 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 2√10 B max T = 3√5 C max T = 3√2 D max T = 2√5
Câu 42 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= √33 B |z|= 50 C |z|= √10 D |z|= 5√2
Câu 43 Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 125π
√
3
250π√3
500π√3
400π√3
Trang 4Câu 44 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 45 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 46 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 23
29
25
27
4 .
Câu 47 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax > ay
⇔ x< y B Nếu a < 1 thì ax > ay
⇔ x< y
C Nếu a > 1 thì ax > ay
⇔ x> y D Nếu a > 0 thì ax = ay
⇔ x= y
Câu 48 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
32.
Câu 49 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
17
πa2√ 17
πa2√ 15
πa2√ 17
Câu 50 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = 2πRl + 2πR2 B St p = πRl + 2πR2 C St p = πRh + πR2 D St p = πRl + πR2
Trang 5HẾT