1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (800)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 121,39 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 2 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A [22;+∞) B (7

4;+∞)

C [7

4; 2]S[22;+∞) D (7

4; 2]S[22;+∞)

Câu 3 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

A (1;+∞) B (1

4).

Câu 4 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

A. 3

3

√ 3

2) C 1 (m2) D 3√3(m2)

Câu 5 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A. 1

1

2

3.

Câu 6 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

3

√ 3

a√2

2 .

Câu 7 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(1; 1; 2) B I(0; 1; 2) C I(0; 1; −2) D I(0; −1; 2).

Câu 8 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A m < 1

1

3. D Không tồn tại m.

Câu 9 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 1 và x = −1 B y= −1 và x = 2 C y= 1 và x = 2 D y= 2 và x = 1

Câu 10 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (−2; 3; 1) B.→−n = (2; −3; 4) C.→−n = (−2; 3; 4) D.→−n = (2; 3; −4)

Câu 11 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= 3

5−

6

5 + 6

5 + 27

5−

27

5 i.

Câu 12 Tìm nguyên hàm của hàm số f (x)= cos 3x

A.R cos 3xdx = sin 3x

Trang 2

Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 14 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(−3

4;

1

3

4;

3

3

4;

1

3

4;

1

2; −1).

Câu 15 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:

A I(1; 2; −3); R = 3 B I(1; 2; 3); R= 3 C I(−1; 2; −3); R = 3 D I(1; −2; 3); R = 3.

Câu 16 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 17 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 18 Tiệm cận ngang của đồ thị hàm số y= 2x +1

3x−1 là đường thẳng có phương trình:

A y= 1

3 B y= −1

3 C y= −2

3

Câu 19 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 20 Cho hàm số y= ax +b

cx +d có đồ thị là đường cong trong hình bên Tọa độ giao điểm của đồ thị hàm

số đã cho và trục hoành là

Câu 21 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn

log3x2+ y2+ x + log2

x2+ y2

≤ log3x+ log2

x2+ y2+ 24x

?

Câu 22 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng

Câu 23 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

A. 1

2

Câu 24 Trên tập hợp số phức, xét phương trình z2 − 2(m+ 1)z + m2 = 0(m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn |z1|+ |z2|= 2?

Câu 25 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 26 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 27 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Trang 3

Câu 28 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 5 + 2t

y= 5 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

Câu 29 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; −2; 3) B (1; 2; −3) C (−1; −2; −3) D (−1; 2; 3).

Câu 30 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16π

16

16

16π

9 .

Câu 31 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

C.R f(x)= −sinx + x2

2 + C

Câu 32 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn

z1

+ z2

= 2?

Câu 33 Phần ảo của số phức z= 2 − 3i là

Câu 34 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Câu 35 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 36 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 37 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 3 B max |z|= 6 C max |z|= 4 D max |z|= 7

Câu 38 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức

P= |z1+ z2|

√ 2

√ 3

2 .

Câu 39 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

4 .

Câu 40 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|

A |z|= √10 B |z|= 50 C |z|= 5√2 D |z|= √33

Câu 41 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Hai đường thẳng B Một đường thẳng C Đường tròn D Parabol.

Câu 42 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

Trang 4

Câu 43 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 44 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 45 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P = 2abc B P = 2a +b+c. C P= 26abc D P= 2a +2b+3c.

Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1

Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R

A −4 ≤ m ≤ −1 B m > −2 C −3 ≤ m ≤ 0 D m < 0.

Câu 48 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a√2

5a√3

5a√2

Câu 49 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 31π

33π

32π

5 .

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên

đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M

A M(2

3;

7

3;

21

4

3;

10

3 ;

16

5

3;

11

3 ;

17

7

3;

10

3 ; 31

6 ).

Trang 5

HẾT

Ngày đăng: 10/04/2023, 10:25

🧩 Sản phẩm bạn có thể quan tâm