LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết ∫ f (u)du = F(u) +C Mệnh đề nào dưới đây đúng? A ∫ f (2x − 1)dx = 2F(x) − 1[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
A.R f(2x − 1)dx= 2F(x) − 1 + C B. R f(2x − 1)dx = 1
2F(2x − 1)+ C
C.R f(2x − 1)dx= 2F(2x − 1) + C D.R f(2x − 1)dx = F(2x − 1) + C
Câu 2 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 1 B y= x4+ 1 C y= x4+ 2x2+ 1 D y= −x4+ 2x2+ 1
Câu 3 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 4 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho
có diện tích lớn nhất bằng?
A. 3
√
3
√ 3
2) C 3√3(m2) D 1 (m2)
Câu 5 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 6 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 7 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (−3; 1) B Hàm số nghịch biến trên khoảng (−∞; −3).
C Hàm số đồng biến trên khoảng (−3; 1) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 8 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A. 2
1
1
6.
Câu 9 Cho hàm số f (x) Biết f (0)= 4 và f′(x)= 2 sin2x+ 1, ∀x ∈ R, khi đó
π 4 R
0
f(x) bằng
A. π2+ 16π − 16
Câu 10 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ
Câu 11 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; 6; −4) B M(5; 5; 0) C M(−2; −6; 4) D M(2; −6; 4).
Câu 12 Tìm nguyên hàm của hàm số f (x)= cos 3x
C.R cos 3xdx = sin 3x
Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Trang 2Câu 14 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= −x3+ 3x2+ 2 B y= x4− 2x2+ 2 C y= −x4+ 2x2+ 2 D y= x3− 3x2+ 2
Câu 15 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 16 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : x − 2z + 5 = 0 B (P) : x − 2y + 1 = 0 C (P) : y + z − 1 = 0 D (P) : y − z + 2 = 0.
Câu 17 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?
Câu 18 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1
2 = z−1
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 11
Câu 19 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 20 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16
343 < log7 x2−16
27 ?
Câu 21 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?
A.R f(x)dx= sin x + x2
C.R f(x)dx= − sin x + x2+ C D.R f(x)dx= − sin x + x2
2 + C
Câu 22 Cho hàm số y= f (x) có đạo hàm f′(x) = (x − 2)2(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 23 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng
A. 1
e 2
Câu 24 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = 1
πxπ−1 B y′ = πxπ−1 C y′ = πxπ D y′ = xπ−1
Câu 25 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
Câu 26 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?
Câu 27 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−2; −4; −6) B (−1; −2; −3) C (1; 2; 3) D (2; 4; 6).
Câu 28 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 29 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
√
24.
Trang 3Câu 30 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= −1
3.
Câu 31 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; −2; −3) B (−1; 2; 3) C (1; −2; 3) D (1; 2; −3).
Câu 32 Trong không gian Oxyz, cho đường thẳng d : x −1
2 = y −2
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A M(2; −1; −2) B Q(1; 2; −3) C P(1; 2; 3) D N(2; 1; 2).
Câu 33 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 34 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A. 3
1
2 < |z| < 3
2. C |z| > 2. D |z| <
1
2.
Câu 35 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 36 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i
2 z trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 15
2 .
Câu 37 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một đường thẳng B Một Parabol C Một Elip D Một đường tròn.
Câu 38 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 39 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là
Câu 40 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 41 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 1 B max |z|= 2 C max |z|= 3 D max |z|= √2
Câu 42 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R e2xdx=e2x
Trang 4Câu 44 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
3
5a√3
5a√2
5a√2
Câu 45 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 46 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
B D = (−∞; 0)
C D = (−∞; −1] ∪ (1; +∞)
D D = (1; +∞)
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
Câu 48 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m < −2 B m > 1 hoặc m < −1
3 C m > 2 hoặc m < −1 D m > 1.
Câu 49 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3 R
2
|x2− 2x|dx
B.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
D.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
Câu 50 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Trang 5HẾT