LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B 1 C 0 D π[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 2 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 3 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a
3
6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho
Câu 4 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= x4+ 2x2+ 1 B y= −x4+ 2x2+ 1 C y = x4+ 1 D y= −x4+ 1
Câu 5 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
2F(2x − 1)+ C
Câu 6 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 7 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A − ln 2 −1
1
1
2 − ln 2.
Câu 8 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
b)= ln a
ln b.
C ln(ab2)= ln a + 2 ln b D ln(ab2)= ln a + (ln b)2
Câu 9 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần lượt
được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Câu 10 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của
3
R
1
[1+ f (x)]dx bằng
A. 32
26
Câu 11 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M
Câu 12 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 ≤ m < −3 B m > −4 C −4 < m ≤ −3 D −4 < m < −3.
Câu 13 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
Trang 2Câu 14 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln 2023 B y′ = 2023x
ln x D y′ = x.2023x−1
Câu 15 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 16 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?
A.
−
→
a
−
→ c
= √3
Câu 17 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
Câu 18 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?
Câu 19 Cho cấp số nhân (un)với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
Câu 20 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 21 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−2; −4; −6) B (2; 4; 6) C (−1; −2; −3) D (1; 2; 3).
Câu 22 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 2
Câu 23 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 24 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 25 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 26 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 27 NếuR4
−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng
Câu 28 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 29 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 30 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
Trang 3Câu 31 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= 1
3.
Câu 32 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+
z2
= 2?
Câu 33 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 34 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x+ 1)2+ (y − 2)2 = 125 B (x − 5)2+ (y − 4)2= 125
C (x − 1)2+ (y − 4)2 = 125 D x= 2
Câu 35 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Một đường thẳng B Hai đường thẳng C Parabol D Đường tròn.
Câu 36 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng
5π
Câu 37 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′
là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1
2 ⇔ z= 9
2 −
9
2i|z+ 4i − 5|
A. √4
1
√
2
√
1
2.
Câu 38 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 39 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 3 B max |z|= 2 C max |z|= √2 D max |z|= 1
Câu 40 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 41 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A. 3
2 ≤ |z| ≤ 2. B |z| <
1
1
2 < |z| < 3
2.
Câu 42 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác cân B Tam giác OAB là tam giác đều.
C Tam giác OAB là tam giác nhọn D Tam giác OAB là tam giác vuông.
Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Trang 4Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 1 thì ax > ay ⇔ x> y B Nếu a > 0 thì ax > ay ⇔ x< y
C Nếu a > 0 thì ax = ay ⇔ x= y D Nếu a < 1 thì ax > ay ⇔ x< y
Câu 45 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
4.
Câu 46 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = πRh + πR2 B St p = πRl + πR2 C St p = πRl + 2πR2 D St p = 2πRl + 2πR2
Câu 47 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 48 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
6.
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 50 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Trang 5HẾT