1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (977)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 126,3 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (D) giới hạn bởi các đường y = √ x, y = x, x = 2 quay qua[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

A V = π

3 .

Câu 2 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếux= 1 thì y = −3 B Nếu 0 < x < 1 thì y < −3.

C Nếu 0 < x < π thì y > 1 − 4π2 D Nếux > 2 thìy < −15.

Câu 3 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?

C y= 3x+ 1

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

A x= 5 + 2ty = 5 + tz = 2 − 4t B x= 3 + 2ty = 4 + tz = 6

Câu 5 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; 5; 0) B (0; 1; 0) C (0; 0; 5) D (0; −5; 0).

Câu 6 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A a

2 > b√2 B. √5

a< √5

b C ea > eb D a−√3 < b−√3

Câu 7 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

R

R

y= 1

y= −1

2.

Câu 8 Cho hình hộp ABCD.A

B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′

A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′

D′theo a

Câu 9 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2

−1 = x −1

A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là

A (8

3; −

2

3;

7

10

2 ; −

4

3;

5

3). C (2 ; −3 ; 1). D (

2

3; −

4

3;

5

3).

Câu 10 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 11 Đạo hàm của hàm số y= (2x + 1)−

1

3 trên tập xác định là

A 2(2x+ 1)−

1

3(2x+ 1)−

4

3

C −1

3(2x+ 1)−

4

1

3 ln(2x+ 1)

Trang 2

Câu 12 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nPvà

−→

nQ Biết cosin góc giữa hai vectơ−→nP và−nQ→bằng −

√ 3

2 Góc giữa hai mặt phẳng (P) và (Q) bằng.

Câu 13 Cho hàm số y= f (x) có đồ thị của y = f′

(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Câu 14 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua

Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB

Câu 15 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

1 = y+ 1

3 = z+ 2

−2 Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

2

1

53.

Câu 16 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Câu 17 Số phức z= 1+ i

1 − i

!2016 + 1 − i

1+ i

!2018 bằng

Câu 18 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 19 Những số nào sau đây vừa là số thực và vừa là số ảo?

A 0 và 1 B Không có số nào C Chỉ có số 1 D C.Truehỉ có số 0.

Câu 20 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 21 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 22 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 23 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 29

11

11

29

13.

Câu 24 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 25 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Trang 3

Câu 26 Tìm nguyên hàm I = R xcosxdx.

2 + C

2 + C

Câu 27 Họ nguyên hàm của hàm số f (x)= cosx + sinx là

A F(x)= sinx − cosx + C B F(x)= −sinx − cosx + C

C F(x)= sinx + cosx + C D F(x)= −sinx + cosx + C

Câu 28 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

C x − 2y+ 2z − 15 = 0 D x+ 2y + 2z − 15 = 0

Câu 29 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x

A F(x)= −1

2cos2x. B F(x)= −cos2x C F(x) = sin2x D F(x)= −cos2x

Câu 30 F(x) là một nguyên hàm của hàm số y= xex 2

Hàm số nào sau đây không phải là F(x)?

A F(x)= −1

2e

x2 + C B F(x) = −1

2(2 − e

x2) C F(x) = 1

2e

x2 + 2 D F(x)= 1

2(e

x2 + 5)

Câu 31 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R34 f(x)= 4 Tích phân R03 f(x) bằng

Câu 32 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là

A (−1; −1; −3) B (3; 3; −1) C (1; 1; 3) D (3; 1; 1).

Câu 33 Tính tích phân I = R 2

1 xexdx

Câu 34 Cho số phức z thỏa mãn1 −

√ 5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 3

2 < |z| < 3 B. 1

2 < |z| < 2 C 3 < |z| < 5 D. 5

2 < |z| < 4

Câu 35 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 36 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2 Tính giá trị biểu thức P=

z1 z2

+

z2 z1

A. √1

2

√ 2

Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 38 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

2.

Trang 4

Câu 39 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là số thuần ảo B z là một số thực không dương.

C Phần thực của z là số âm D |z|= 1

Câu 40 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 3

1

2 < |z| < 3

2. D |z| <

1

2.

Câu 41 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min = 1 B |w|min = 3

2. C |w|min = 2 D |w|min= 1

2.

Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P =

|z|2− 22 B P = (|z| − 4)2

|z|2− 42 D P= (|z| − 2)2

Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

15

a3

√ 15

a3

√ 5

a3

√ 15

Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

B.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R

2 (x2− 2x)dx

D.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

Câu 45 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 46 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a√3

5a√2

5a√2

Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 48 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

4ln 2+ 3π

1

5ln 2+ 6π

5 . C ln 2+ 6π

5 .

Câu 49 Hàm số nào trong các hàm số sau đồng biến trên R.

A y= 4x+ 1

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (2; 14; 14) B 2→−u + 3−→v = (1; 13; 16)

C 2→−u + 3−→v = (1; 14; 15) D 2→−u + 3−→v = (3; 14; 16)

Trang 5

HẾT

Ngày đăng: 10/04/2023, 08:07