1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (977)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,73 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đ[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 2 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếux= 1 thì y = −3 B Nếux > 2 thìy < −15.

C Nếu 0 < x < 1 thì y < −3 D Nếu 0 < x < π thì y > 1 − 4π2

Câu 3 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

Câu 4 Cho hình lập phương ABCD.A

B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 5 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = √3 B |→−u |= 3

C |→−u |= 9 D |→−u |= 1

Câu 6 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

Câu 7 Kết quả nào đúng?

A.R sin2xcos x= −cos2x sin x + C B. R sin2xcos x= cos2x sin x + C

C.R sin2xcos x= sin3x

Câu 8 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

A. 3

3πR3

Câu 9 Cho hàm số y= f (x) có đồ thị của y = f′(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Câu 10 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính

e 2

R

1

f(ln x)

Câu 11 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua

Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB

Trang 2

Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

−2 Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

A. 2

3

5.

Câu 13 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

2.

Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2+ (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?

A (P) không cắt mặt cầu (S ) B (P) cắt mặt cầu (S ).

C (P) tiếp xúc mặt cầu (S ) D (P) đi qua tâm mặt cầu (S ).

Câu 15 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 16 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2

−1 = x −1

A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là

A (8

3; −

2

3;

7

3). B (2 ; −3 ; 1). C (

10

2 ; −

4

3;

5

2

3; −

4

3;

5

3).

Câu 17 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= 1 B |z1+ z2|= 5 C |z1+ z2|= √5 D |z1+ z2|= √13

Câu 18 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −29

11

29

11

13.

Câu 19 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 20 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 21 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 22 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 23 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 24 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 5

34

√ 34

Câu 25 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 26 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

Trang 3

Câu 27 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

A.R f(x)dx= √ 1

R

f(x)dx= 1

2

√ 2x+ 1 + C

Câu 28 Mệnh đề nào sau đây sai?

A.R( f (x) − g(x)) = R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R

B. R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R

C.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R

D.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R

Câu 29 Tìm nguyên hàm I = R xcosxdx

2 + C

2 + C

Câu 30 Tính tích phân I = R 2

1 xexdx

Câu 31 ChoR1

0 f(x)= 2Rv `a R1

0 g(x)= 5 R01[ f (x) − 2g(x)] bằng

Câu 32 Hàm số f (x) thoả mãn f′(x)= xxlà:

A (x − 1)x+ C B (x+ 1)x+ C C x2+ x+1

x+ 1 + C. D x2 x+ C.

Câu 33 F(x) là một nguyên hàm của hàm số y= xex2 Hàm số nào sau đây không phải là F(x)?

A F(x)= 1

2(e

x 2

+ 5) B F(x)= −1

2(2 − e

x 2

) C F(x) = 1

2e

x 2

+ 2 D F(x)= −1

2e

x 2

+ C

Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

4

!

2;

9 4

!

4;

5 4

!

Câu 35 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

2.

Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 37 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2 Tính giá trị biểu thức P=

z1

z2

+

z2

z1

A. √1

2

√ 2

2 .

Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2

85

√ 97

Trang 4

Câu 39 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 40 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 1

2 < |z| < 3

3

1

2.

Câu 41 Cho a, b, c là các số thực và z= −1

2 +

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 42 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 4 B |z|= 1

Câu 43 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 − 3 sin 3x)5x +cos3xln 5. B y′ = (1 + 3 sin 3x)5x +cos3xln 5.

C y′ = 5x +cos3xln 5. D y′ = (1 − sin 3x)5x +cos3xln 5.

Câu 44 Biết

π 2 R

0 sin 2xdx= ea Khi đó giá trị a là:

Câu 45 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 46 Hàm số nào trong các hàm số sau đồng biến trên R.

A y= 4x+ 1

Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 B (x − 1)2+ (y + 2)2+ (z − 4)2= 1

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 D (x − 1)2+ (y − 2)2+ (z − 4)2= 1

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm

A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A −2x − y+ 4z − 8 = 0 B 2x+ y − 4z + 7 = 0

C 2x+ y − 4z + 1 = 0 D 2x+ y − 4z + 5 = 0

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)

A.

x= −1 + 2t

y= 2 + 3t

x= 1 − 2t

y= −2 + 3t

x= 1 + 2t

y= −2 + 3t

x= 1 + 2t

y= −2 − 3t

z= 4 − 5t .

Câu 50 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P = 2abc B P = 2a +b+c. C P= 26abc D P= 2a +2b+3c.

Trang 5

HẾT

Ngày đăng: 10/04/2023, 07:59