1. Trang chủ
  2. » Thể loại khác

Đề kiểm tra thpt môn toán (947)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ
Định dạng
Số trang 4
Dung lượng 125,21 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0 là A 0 B 1 C 4 D 2 Câu 2 Bi[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Số nghiệm của phương trình 9x+ 5.3x

− 6= 0 là

Câu 2 Biết F(x) là một nguyên hàm của hàm số f (x)= x

cos2x và F(

π

3)= √π

3 Tìm F(

π

4)

A F(π

4)= π

3 −

ln 2

2 . B F(

π

4)= π

3 + ln 2

2 . C F(

π

4)= π

4 −

ln 2

2 . D F(

π

4)= π

4 + ln 2

2 .

Câu 3 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

2

q

b2− √3a2

√ 3a2b

12 .

√ 3ab2

√ 3b2− a2

Câu 4 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc

tơ pháp tuyến của (P) là

A (2; −1; 2) B (2; −1; −2) C (−2; −1; 2) D (−2; 1; 2).

Câu 5 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:

A y= x

5 ln 5− 1+ 1

5 ln 5 + 1

C y= x

5 ln 5−

1

5 ln 5 + 1 − 1

ln 5.

Câu 6 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 7 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

A. 3

3πR3

Câu 8 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 9 Cho hai số phức u, v thỏa mãn

u

= v

= 10 và

3u − 4v

= 50 Tìm giá trị lớn nhất của biểu thức

4u+ 3v − 8 + 6i

Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?

A (P) cắt mặt cầu (S ) B (P) đi qua tâm mặt cầu (S ).

C (P) tiếp xúc mặt cầu (S ) D (P) không cắt mặt cầu (S ).

Câu 11 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính

e 2

R

1

f(ln x)

Câu 12 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?

A Q(4 ; 4 ; 2) B P(4 ; −1 ; 3) C M(0 ; 0 ; 2) D N(1 ; 1 ; 7).

Trang 2

Câu 13 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn

phương án dưới đây Hỏi hàm số đó là hàm số nào?

Câu 14 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng

MN có phương trình tham số là

Câu 15 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 16 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?

Câu 17 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 18 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 19 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là

A m ≥ 1 hoặc m ≤ 0 B m ≥ 0 hoặc m ≤ −1 C −1 ≤ m ≤ 0 D 0 ≤ m ≤ 1.

Câu 20 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực không âm B Mô-đun của số phức z là số thực dương.

C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực.

Câu 21 Với mọi số phức z, ta có |z+ 1|2bằng

A z+ z + 1 B z2+ 2z + 1 C z · z+ z + z + 1 D |z|2+ 2|z| + 1

Câu 22 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 23 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 24 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A z= 1

Câu 25 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 26 Cho cấp số nhân (un) với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

A. 1

7

1

Câu 27 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= lnx B F′(x)= 1

x2 D F′(x)= −1

x2

Trang 3

Câu 28 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 1

4

9

18

35.

Câu 29 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x) bằng

A. 3

3

4.

Câu 30 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 31 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 32 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; 2; 3) B (1; −2; 3) C (−1; −2; −3) D (1; 2; −3).

Câu 34 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 22 B P=

|z|2− 42 C P = (|z| − 4)2 D P = (|z| − 2)2

Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 38 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| < 1

1

2 < |z| < 3

3

2 ≤ |z| ≤ 2.

Câu 39 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

2.

Trang 4

Câu 40 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i.

Câu 41 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 42 Cho số phức z thỏa mãn1 −

√ 5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 1

2 < |z| < 2 B 3 < |z| < 5 C. 5

2 < |z| < 4 D. 3

2 < |z| < 3

Câu 43 Thể tích khối lập phương có cạnh 3a là:

Câu 44 Cho cấp số nhân (un) với u1= −1

2; u7= −32 Tìm q?

Câu 45 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt

phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD

A V = 2a3 B V = 3a3 C V = a3

Câu 46 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 2 và x = 1 B y= 1 và x = −1 C y= −1 và x = 2 D y= 1 và x = 2

Câu 47 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=

a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 48 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 49 Với a là số thực dương tùy ý, log5(5a) bằng

A 5 − log5a B 1 − log5a C 1+ log5a D 5+ log5a

Câu 50 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

3

√ 15

√ 3

1

2.

HẾT

Ngày đăng: 09/04/2023, 20:27