1. Trang chủ
  2. » Thể loại khác

Đề kiểm tra thpt môn toán (854)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ
Định dạng
Số trang 5
Dung lượng 126,42 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho số thực dươngm Tính I = m∫ 0 dx x2 + 3x + 2 theo m? A I = ln( 2m + 2[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001

Câu 1 Cho số thực dươngm Tính I = Rm

0

dx

x2+ 3x + 2 theo m?

A I = ln(2m+ 2

m+ 2 ). B I = ln(

m+ 1

m+ 2). C I = ln(

m+ 2 2m+ 2). D I = ln(

m+ 2

m+ 1).

Câu 2 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?

A alogax = x B loga(x − 2)2 = 2loga(x − 2)

C logax2 = 2logax D loga2x= 1

2logax.

Câu 3 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

A. 13

Câu 4 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (−2; 0; 0) B (0; 2; 0) C (0; −2; 0) D (0; 6; 0).

Câu 5 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

3.

Câu 6 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

R

y= −1

2. C minR

y= 1

y= −1

Câu 7 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC =

√ 3ab2

√ 3a2b

12 .

C VS.ABC = a

2 q

b2− √3a2

√ 3b2− a2

Câu 8 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?

Câu 9 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng

Câu 10 Cho hai số phức u, v thỏa mãn

u

= v

= 10 và

3u − 4v

= 50 Tìm giá trị lớn nhất của biểu thức

4u+ 3v − 8 + 6i

Câu 11 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; 2; 3) B.→−n = (1; −2; −1) C.→−n = (1; −2; 3) D.→−n = (1; 3; −2)

Trang 2

Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

3 = z+ 2

−2 Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

2

1

53.

Câu 13 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua

Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB

Câu 14 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng

(S BD) theo a

A. a

a√2

Câu 15 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng

Câu 16 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 17 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 18 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 19 Với mọi số phức z, ta có |z+ 1|2bằng

A z2+ 2z + 1 B |z|2+ 2|z| + 1 C z+ z + 1 D z · z+ z + z + 1

Câu 20 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 21 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 22 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= 1 B |z1+ z2|= √13 C |z1+ z2|= √5 D |z1+ z2|= 5

Câu 23 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực.

C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số thực dương.

Câu 24 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 25 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là

A −1 ≤ m ≤ 0 B m ≥ 0 hoặc m ≤ −1 C m ≥ 1 hoặc m ≤ 0 D 0 ≤ m ≤ 1.

Câu 26 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

√ 3

√ 2

√ 3

3 a.

Trang 3

Câu 27 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 28 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn

z1

+

z2

= 2?

Câu 29 Phần ảo của số phức z= 2 − 3i là

Câu 30 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= 2

′(x)= −1

x2 D F′(x)= lnx

Câu 31 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 32 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= 2

3.

Câu 33 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= 1

′ = ln3

′ = − 1

′ = 1

x.

Câu 34 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 2

√ 3

2 .

Câu 35 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1

2. B |w|min= 3

2. C |w|min = 2 D |w|min = 1

Câu 36 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 1

2;

9

4

!

4;+∞

!

4

!

4;

5 4

!

Câu 38 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 39 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 40 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

2.

Trang 4

Câu 41 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| < 1

1

2 < |z| < 3

3

2 ≤ |z| ≤ 2.

Câu 42 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2= 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 4√13 B T = 2

√ 97

√ 85

Câu 43 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

A C3

Câu 44 Với a là số thực dương tùy ý, log5(5a) bằng

Câu 45 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt

phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD

A V = 3a3 B V = a3

Câu 46 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 47 Tính đạo hàm của hàm số y= 2023x

A y′ = 2023x

ln x C y′ = x.2023x−1 D y′ = 2023x

ln 2023

Câu 48 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 2 và x = 1 B y= 1 và x = 2 C y= 1 và x = −1 D y= −1 và x = 2

Câu 49 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

3

1

√ 15

√ 3

2 .

Câu 50 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : x − 2z + 5 = 0 B (P) : x − 2y + 1 = 0 C (P) : y − z + 2 = 0 D (P) : y + z − 1 = 0.

Trang 5

HẾT

Ngày đăng: 09/04/2023, 20:14