1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (507)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 121,85 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3+ x2và y[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A m= 2 B −2 ≤ m ≤ 2 C 0 < m < 2 D −2 < m < 2.

Câu 2 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

3.

Câu 3 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 4 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab2)= ln a + (ln b)2

b)= ln a

ln b.

C ln(ab)= ln a ln b D ln(ab2)= ln a + 2 ln b

Câu 5 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

√ 3

√ 3

2)

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(1; 5; 3) B C(3; 7; 4) C C(−3; 1; 1) D C(5; 9; 5).

Câu 7 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 8 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. 4m

2− 3

m2− 12

m2− 3

m2− 12

Câu 9 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= −1 và x = 2 B y= 1 và x = 2 C y= 1 và x = −1 D y= 2 và x = 1

Câu 10 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 11. R 6x5dxbằng

6x

6+ C

Câu 12 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A −1 ≤ m < 0 B m < −1 C −1 ≤ m ≤ 0 D m > 1.

Câu 13 Cho hàm số f (x) Biết f (0)= 4 và f′

(x)= 2 sin2

x+ 1, ∀x ∈ R, khi đó

π 4 R

0

f(x) bằng

A. π2+ 15π

Trang 2

Câu 14 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng

Câu 15 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi

có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 16 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của

3 R

1 [1+ f (x)]dx bằng

A. 26

32

Câu 17 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x

3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 18 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′ = ln 3

x B y′ = 1

x C y′ = − 1

x ln 3 D y′ = 1

x ln 3

Câu 19 Xét các số phức z thỏa mãn z2− 3 − 4i = 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng

Câu 20 Cho hàm số y= f (x) có đạo hàm f′(x) = (x − 2)2(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 21 Trên tập hợp số phức, xét phương trình z2 − 2(m+ 1)z + m2 = 0(m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn |z1|+ |z2|= 2?

Câu 22 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

Câu 23 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 24 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng

Câu 25 Tiệm cận ngang của đồ thị hàm số y= 2x +1

3x−1 là đường thẳng có phương trình:

A y= −2

3 D y= −1

3

Câu 26 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 27 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 28 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

6 a

√ 2

4 a

√ 2

2 a

3 D. √2a3

Câu 29 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 30 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n2 = (1; −1; 1) B.→−n1 = (−1; 1; 1) C.→−n3 = (1; 1; 1) D.→−n4 = (1; 1; −1)

Trang 3

Câu 31 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

A. 1

Câu 32 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 33 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16

16π

16π

16

15.

Câu 34 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 35 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x − 5)2+ (y − 4)2 = 125 B (x − 1)2+ (y − 4)2= 125

C (x+ 1)2+ (y − 2)2 = 125 D x= 2

Câu 36 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √1

4

1

2

5.

Câu 37 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 38 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 39 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một Parabol B Một Elip C Một đường thẳng D Một đường tròn.

Câu 40 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= 1 B max |z|= 3 C max |z|= 2 D max |z|= √2

Câu 41 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 42 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Parabol B Một đường thẳng C Hai đường thẳng D Đường tròn.

Câu 43 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

6.

Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:

A Nếu a > 0 thì ax > ay ⇔ x< y B Nếu a > 0 thì ax = ay ⇔ x= y

C Nếu a > 1 thì ax > ay ⇔ x> y D Nếu a < 1 thì ax > ay ⇔ x< y

Trang 4

Câu 45 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 46 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P = 2a +2b+3c. B P = 2a +b+c. C P= 26abc D P= 2abc

Câu 47 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 48 Cho bất phương trình 3

√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng

A Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

B Bất phương trình đúng với mọi x ∈ [ 1; 3].

C Bất phương trình vô nghiệm.

D Bất phương trình đúng với mọi x ∈ (4;+∞)

Câu 49 Cho hình lăng trụ đứng ABCD.A

B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

5

√ 3

√ 3

1

2.

Câu 50 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

15

πa2√ 17

πa2√ 17

πa2√ 17

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:36

w