LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hìn[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(0; 0; 3) B A(1; 0; 3) C A(0; 2; 3) D A(1; 2; 0).
Câu 2 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 3 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A. 2
1
1
Câu 4 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 5 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
A.R f(2x − 1)dx= 2F(2x − 1) + C B. R f(2x − 1)dx = F(2x − 1) + C
C.R f(2x − 1)dx= 1
Câu 6 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
√ 2
a√3
a√3
4 .
Câu 7 Tính nguyên hàmR cos 3xdx
A. 1
3sin 3x+ C D 3 sin 3x+ C
Câu 8 Tìm nghiệm của phương trình 2x = (√3)x
Câu 9 Thể tích khối lập phương có cạnh 3a là:
Câu 10 Biết
3 R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2 [ f (x)+ g(x)]dx bằng
Câu 11 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
A A3
Câu 12 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 14 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= −6
5 −
27
5 + 6
5 + 27
5 − 6
5i.
Trang 2Câu 15 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 16 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
2(x
2+ 1)
1
2 B 3x(x2+ 1)
1
4x
−1
2(2x)
1
2
Câu 17 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 18 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
Câu 19 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?
2 + C
C.R f(x)dx= − sin x + x2+ C D.R f(x)dx= − sin x + x2
2 + C
Câu 20 Tiệm cận ngang của đồ thị hàm số y= 2x+1
3x−1 là đường thẳng có phương trình:
A y= 1
3 B y= −2
3 C y= −1
3
Câu 21 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
Câu 22 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′ = 1
x ln 3 B y′ = ln 3
x C y′ = 1
x D y′ = − 1
x ln 3
Câu 23 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x4− 3x2+ 2 C y= x−3
Câu 24 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 25 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 26 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn
z1
+ z2
= 2?
Câu 27 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−2; −4; −6) B (1; 2; 3) C (−1; −2; −3) D (2; 4; 6).
Câu 28 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 29 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
A.
x= 1 + 2t
y= −1 + t
x= 5 + 2t
y= 5 + 3t
x= 1 + 2t
y= −1 + 3t
x= 5 + t
y= 5 + 2t
z= 1 + 3t .
Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Trang 3Câu 31 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 32 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 33 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
2 + C
2 + C
Câu 34 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1
2
⇔ x= 9
2 ⇔ z= 9
2 −
9
2i|z+ 4i − 5|
A. √2
1
1
√
4
√
13.
Câu 35 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn Tính bán kính r của đường tròn đó
Câu 36 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 2 B max |z|= 3 C max |z|= 1 D max |z|= √2
Câu 37 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là
Câu 38 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 7 B max |z|= 3 C max |z|= 6 D max |z|= 4
Câu 39 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
C (x+ 1)2+ (y − 2)2 = 125 D (x − 1)2+ (y − 4)2= 125
Câu 40 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′
là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
4 .
Câu 41 Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − z
z −2i
= 2 ?
A Một Parabol B Một Elip C Một đường thẳng D Một đường tròn.
Câu 42 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 43 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Trang 4Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 45 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 46 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
A P = 2abc B P = 26abc C P= 2a +2b+3c. D P= 2a +b+c.
Câu 47 Cho hình lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′
B′C′
A 6a3√
3
Câu 48 Biết
π 2 R
0 sin 2xdx= ea Khi đó giá trị a là:
Câu 49 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A. 1
√ 15
√ 15
√ 5
3 .
Câu 50 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Trang 5HẾT