LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề nào dưới đây đúng? A Hàm số nghịch bi[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng (−3; 1).
C Hàm số nghịch biến trên khoảng (−3; 1) D Hàm số nghịch biến trên khoảng (−∞; −3) Câu 2 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 3 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(1; 5; 3) B C(3; 7; 4) C C(5; 9; 5) D C(−3; 1; 1).
Câu 5 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 6 Cho hàm số y= 2x+ 2017
x
+ 1 (1) Mệnh đề nào dưới đây là đúng?
A Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1
B Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng
C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x= −1, x = 1
D Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng
Câu 7 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A. 1
1
2. D ln 2 −
1
2.
Câu 8 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A −2 ≤ m ≤ 2 B −2 < m < 2 C 0 < m < 2 D m= 2
Câu 9 Thể tích khối lập phương có cạnh 3a là:
Câu 10 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD =
a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 11 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 < m < −3 B −4 < m ≤ −3 C m > −4 D −4 ≤ m < −3.
Trang 2Câu 12 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : x − 2y + 1 = 0 B (P) : y − z + 2 = 0 C (P) : y + z − 1 = 0 D (P) : x − 2z + 5 = 0.
Câu 13 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?
Câu 14 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.
Câu 15 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
A V = 32
Câu 16 Đường thẳng (∆) : x −1
2 = y+ 2
−1 không đi qua điểm nào dưới đây?
A (3; −1; −1) B (−1; −3; 1) C (1; −2; 0) D A(−1; 2; 0).
Câu 17 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng
A. 2
√
3
√ 3
√ 2
2 a
Câu 18 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 19 Cho hàm số y= ax +b
cx +d có đồ thị là đường cong trong hình bên Tọa độ giao điểm của đồ thị hàm
số đã cho và trục hoành là
Câu 20 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 21 NếuR4
−1 f(x)dx= 2 và R−14 g(x)dx= 3 thì R−14[ f (x)+ g(x)]dx bằng
Câu 22 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16
343 < log7 x2−16
27 ?
Câu 23 Trong không gian Oxyz, cho đường thẳng d : x−1
2 = y−2
−1 = z +3
−2 Điểm nào dưới đây thuộc d?
A M(2; −1; −2) B Q(1; 2; −3) C N(2; 1; 2) D P(1; 2; 3).
Câu 24 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?
Câu 25 Tiệm cận ngang của đồ thị hàm số y= 2x +1
3x−1 là đường thẳng có phương trình:
A y= −1
3 D y= −2
3
Câu 26 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1 = (−1; 1; 1) B.→−n4 = (1; 1; −1) C.→−n2 = (1; −1; 1) D.→−n3 = (1; 1; 1)
Câu 27 NếuR02 f(x)= 4 thì R2
0 [1
2f(x) − 2] bằng
Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 29 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Trang 3Câu 30 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:
A y′= πxπ−1 B y′ = πxπ C y′ = π1xπ−1 D y′ = xπ−1
Câu 31 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
A. 5
24
√
Câu 32 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
A. 8
Câu 33 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 34 Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − z
z −2i
= 2 ?
A Một Elip B Một đường thẳng C Một đường tròn D Một Parabol.
Câu 35 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức
P= |z1+ z2|
A P=
√
3
√ 2
2 .
Câu 36 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng
5π
4 .
Câu 37 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác cân B Tam giác OAB là tam giác đều.
C Tam giác OAB là tam giác nhọn D Tam giác OAB là tam giác vuông.
Câu 38 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 6 B max |z|= 7 C max |z|= 3 D max |z|= 4
Câu 39 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 40 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 41 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 3√2 B max T = 3√5 C max T = 2√5 D max T = 2√10
Câu 42 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Đường tròn B Hai đường thẳng C Một đường thẳng D Parabol.
Câu 43 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 44 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Trang 4Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R (2x+ 1)2
dx= (2x+ 1)3
2 + C
Câu 46 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2 B y= −x4+ 2x2+ 8 C y= −2x4+ 4x2 D y= x3− 3x2
Câu 47 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m
Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
5
a3√15
a3√15
a3√15
Câu 49 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1
Trang 5HẾT