LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hìn[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(0; 2; 3) B A(1; 2; 0) C A(1; 0; 3) D A(0; 0; 3).
Câu 2 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
A (1;+∞) B (0;1
1
4;+∞) D (0; 1).
Câu 3 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
a√15
a√5
√ 15
Câu 4 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 5 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′
; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
3.
Câu 6 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 7 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 8 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A. 2π
√
2.a2
√
π√2.a2
Câu 9 Hàm số y= (x + m)3+ (x + n)3− x3đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
A. 1
−1
Câu 10 Cho cấp số nhân (un) với u1 = −1
2; u7 = −32 Tìm q?
Câu 11 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần
lượt được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Câu 12 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là
Trang 2Câu 13 Biết F(x)= x2
là một nguyên hàm của hàm số f (x) trên R Giá trị của
3
R
1
[1+ f (x)]dx bằng
A. 26
32
Câu 14 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 15 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
A C3
30
Câu 16 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
Câu 17 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = xπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = 1
πxπ−1
Câu 18 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 19 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 20 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 21 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
Câu 22 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng
Câu 23 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x−3
x−1 B y= x3− 3x − 5 C y= x4− 3x2+ 2 D y= x2− 4x+ 1
Câu 24 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3x2+ y2+ x + log2
x2+ y2
≤ log3x+ log2
x2+ y2+ 24x
?
Câu 25 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 26 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
A. 1
Câu 27 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 28 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = πxπ−1 B y′ = 1πxπ−1 C y′ = xπ−1 D y′ = πxπ
Câu 29 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?
Trang 3Câu 30 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 31 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (1; 2; 3) B (2; 4; 6) C (−2; −4; −6) D (−1; −2; −3).
Câu 32 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
A. 2
√
3
√ 2
√ 3
√ 2a
Câu 33 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
A.R f(x)= sinx + x2
2 + C
Câu 34 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x+ 1)2+ (y − 2)2 = 125 B x= 2
C (x − 1)2+ (y − 4)2 = 125 D (x − 5)2+ (y − 4)2= 125
Câu 35 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác vuông B Tam giác OAB là tam giác nhọn.
C Tam giác OAB là tam giác cân D Tam giác OAB là tam giác đều.
Câu 36 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn Tính bán kính r của đường tròn đó
Câu 37 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 6 B max |z|= 3 C max |z|= 7 D max |z|= 4
Câu 38 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A |z| < 1
3
1
2 < |z| < 3
2.
Câu 39 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
4 .
Câu 40 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= √33 B |z|= 50 C |z|= √10 D |z|= 5√2
Câu 41 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 42 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng
5π
2 .
Trang 4Câu 43 Tìm tập xác định D của hàm số y= log23x+ 1
x −1
B D = (1; +∞)
C D = (−∞; 0)
D D = (−∞; −1] ∪ (1; +∞)
Câu 44 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
12.
Câu 45 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 46 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A. 1
√ 3
√ 5
√ 3
4 .
Câu 47 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 25
29
27
23
4 .
Câu 48 Tính đạo hàm của hàm số y= 5x +cos3x
C y′ = (1 − 3 sin 3x)5x +cos3xln 5. D y′ = (1 + 3 sin 3x)5x +cos3xln 5
Câu 49 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R e2xdx=e2x
C.R (2x+ 1)2dx= (2x+ 1)3
Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc
tơ 2→−u + 3−→v
A 2→−u + 3−→v = (1; 13; 16) B 2→−u + 3−→v = (2; 14; 14)
C 2→−u + 3−→v = (3; 14; 16) D 2→−u + 3−→v = (1; 14; 15)
Trang 5HẾT