1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (508)

5 2 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 121,35 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tập nghiệm của bất phương trình log1 2 (x − 1) ≥ 0 là A (1; 2] B [2;+∞) C (−∞; 2][.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 2 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A −2 ≤ m ≤ 2 B −2 < m < 2 C 0 < m < 2 D m= 2

Câu 3 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.

Tính thể tích của khối trụ

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x + y + 2z = 0 B (P) : x − 2y − 2 = 0 C (P) : x − y + 2z = 0 D (P) : x − y − 2z = 0.

Câu 5 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A. 1

1

2

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1

3. B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 3

C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

Câu 7 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A. π√3.a2

2π√2.a2

Câu 8 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. m

2− 12

m2− 12

4m2− 3

m2− 3 2m .

Câu 9 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A (−∞; 3] B (−∞; −3] ∪ [3; +∞) C (0; 3] D [−3; 3].

Câu 10 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 11 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của

3 R

1 [1+ f (x)]dx bằng

A. 32

26

3 .

Câu 12 Biết

3 R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2 [ f (x)+ g(x)]dx bằng

Trang 2

Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 14 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Câu 15 Số phức z= 2 − 3i có phần ảo là

Câu 16 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

30

Câu 17 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x

3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 18 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

Câu 19 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

Câu 20 Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

Câu 21 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn

log3x2+ y2+ x + log2

x2+ y2≤ log3x+ log2

x2+ y2+ 24x

?

Câu 22 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng

Câu 23 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′

BC)bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

√ 2

√ 2

4 a3

Câu 24 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 25 Trong không gian Oxyz, cho đường thẳng d : x−12 = y−2

−1 = z +3

−2 Điểm nào dưới đây thuộc d?

A Q(1; 2; −3) B M(2; −1; −2) C P(1; 2; 3) D N(2; 1; 2).

Câu 26 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 27 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?

Câu 28 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= lnx B F′(x)= −1

x2 C F′(x)= 1

′(x)= 2

x2

Trang 3

Câu 29 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 30 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n3= (1; 1; 1) B.→−n1 = (−1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n4 = (1; 1; −1)

Câu 31 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 32 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn

z1

+

z2

= 2?

Câu 33 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

1

3.

Câu 34 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Câu 35 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 36 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z

w là

số thuần ảo thì mệnh đề nào sau đây đúng?

A Tam giác OAB là tam giác đều B Tam giác OAB là tam giác vuông.

C Tam giác OAB là tam giác nhọn D Tam giác OAB là tam giác cân.

Câu 37 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|

A |z|= 5√2 B |z|= 50 C |z|= √10 D |z|= √33

Câu 38 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2 ⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √4

2

1

1

2.

Câu 39 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x − y+ 4 = 0 B x+ y − 8 = 0 C x+ y − 5 = 0 D x − y+ 8 = 0

Câu 40 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức

P= |z1+ z2|

A P=

3

√ 2

Câu 41 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là

Trang 4

Câu 42 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A. 1

2 < |z| < 3

2. B |z| <

1

3

2 ≤ |z| ≤ 2.

Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:

A.R (2x+ 1)2dx= (2x+ 1)3

C.R e2xdx=e2x

Câu 44 Hàm số nào trong các hàm số sau đồng biến trên R.

x+ 2 .

Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)

A.

x= 1 + 2t

y= −2 + 3t

z= 4 − 5t

x= 1 + 2t

y= −2 − 3t

z= 4 − 5t

x= 1 − 2t

y= −2 + 3t

z= 4 + 5t

x= −1 + 2t

y= 2 + 3t

z= −4 − 5t

Câu 46 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 47 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD

Câu 48 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

3.

Câu 49 Cho hình lăng trụ đứng ABCD.A

B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

3

1

√ 3

√ 5

5 .

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên

đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M

A M(7

3;

10

3 ;

31

4

3;

10

3 ;

16

2

3;

7

3;

21

5

3;

11

3 ; 17

3 ).

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:24

🧩 Sản phẩm bạn có thể quan tâm