1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (604)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 119,83 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình t[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

A 3√3(m2) B. 3

√ 3

√ 3

2)

Câu 2 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

Câu 3 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A m= 2 B −2 ≤ m ≤ 2 C −2 < m < 2 D 0 < m < 2.

Câu 4 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 5 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= −3 B f (−1)= 3 C f (−1)= −1 D f (−1)= −5

Câu 6 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất

Câu 7 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(1; 1; 2) B I(0; 1; 2) C I(0; −1; 2) D I(0; 1; −2).

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(1; 2; 0) B A(0; 0; 3) C A(0; 2; 3) D A(1; 0; 3).

Câu 9 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2−5x+m) > log3(x−2)

có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 10 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (2; 3; −4) B.→−n = (2; −3; 4) C.→−n = (−2; 3; 1) D.→−n = (−2; 3; 4)

Câu 11 Cho hàm số y = f (x) có đạo hàm f′(x) = x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng

Câu 12 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt

phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD

A V = 2a3 B V = a3 C V = a3

Câu 13 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là

A x= 2 + 2ty = −3tz = −1 + t B x= −2 + 2ty = −3tz = 1 + t

Trang 2

Câu 14 Với a là số thực dương tùy ý, log5(5a) bằng

Câu 15 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=

a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 16 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= x3− 3x2+ 2 B y= x4− 2x2+ 2 C y= −x4+ 2x2+ 2 D y= −x3+ 3x2+ 2

Câu 17 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng

Câu 18 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

Câu 19 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2

0 f(2x)dx bằng

Câu 20 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′

BC)bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

√ 2

√ 2

2 a3 D. √2a3

Câu 21 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; 2; −3) B (−1; −2; −3) C (1; −2; 3) D (−1; 2; 3).

Câu 22 Trong không gian Oxyz, cho đường thẳng d : x−12 = y−2

−1 = z +3

−2 Điểm nào dưới đây thuộc d?

A M(2; −1; −2) B P(1; 2; 3) C N(2; 1; 2) D Q(1; 2; −3).

Câu 23 Xét các số phức z thỏa mãn z2− 3 − 4i = 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng

Câu 24 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16

343 < log7 x2−16

27 ?

Câu 25 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 26 Cho hàm số y= f (x) có đạo hàm f′(x) = (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 27 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 1 + 2t

y= −1 + t

x= 5 + 2t

y= 5 + 3t

x= 5 + t

y= 5 + 2t

x= 1 + 2t

y= −1 + 3t

z= −1 + t .

Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 29 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; 2; −3) B (1; −2; 3) C (−1; −2; −3) D (−1; 2; 3).

Trang 3

Câu 30 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= ln3

′ = − 1

′ = 1

′ = 1

x.

Câu 31 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 32 NếuR4

−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng

Câu 33 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 34 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một Elip B Một đường tròn C Một đường thẳng D Một Parabol.

Câu 35 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 2√10 B max T = 2√5 C max T = 3√2 D max T = 3√5

Câu 36 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 4 B max |z|= 6 C max |z|= 3 D max |z|= 7

Câu 37 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x+ y − 8 = 0 B x − y+ 8 = 0 C x − y+ 4 = 0 D x+ y − 5 = 0

Câu 38 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức

P= |z1+ z2|

√ 2

√ 3

2 .

Câu 39 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 40 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|

A |z|= √10 B |z|= 5√2 C |z|= 50 D |z|= √33

Câu 41 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

A.

Câu 42 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 43 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị

F(0) bằng:

A. 1

5ln 2+ 6π

5 . B ln 2+ 6π

1

4ln 2+ 3π

2 .

Câu 44 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Trang 4

Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:

A.R (2x+ 1)2

dx= (2x+ 1)3

2 + C

Câu 46 Cho P= 2a

4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P = 26abc B P = 2a +b+c. C P= 2a +2b+3c. D P= 2abc

Câu 47 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m

Câu 48 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

6

a√15

3a√6

3a√30

10 .

Câu 49 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

B.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R

2 (x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

D.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

Câu 50 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:17

🧩 Sản phẩm bạn có thể quan tâm

w