1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (700)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 121,98 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng? A ln(ab2) = ln a[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab2)= ln a + (ln b)2

b)= ln a

ln b.

C ln(ab)= ln a ln b D ln(ab2)= ln a + 2 ln b

Câu 2 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 3 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 4 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A. π√3.a2

2π√2.a2

π√2.a2

√ 3.a2

Câu 5 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

A.R f(2x − 1)dx= 1

2F(2x − 1)+ C B. R f(2x − 1)dx = F(2x − 1) + C

C.R f(2x − 1)dx= 2F(2x − 1) + C D.R f(2x − 1)dx = 2F(x) − 1 + C

Câu 6 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Câu 7 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?

A Có một tiệm cận ngang và một tiệm cận đứng .

B Có một tiệm cận ngang và không có tiệm cận đứng.

C Không có tiệm cận.

D Không có tiệm cận ngang và có một tiệm cận đứng.

Câu 8 Cho hàm số f (x) thỏa mãn f′′

(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= −5 B f (−1)= 3 C f (−1)= −1 D f (−1)= −3

Câu 9 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y= x2 và đường thẳng y= mx với m , 0 Hỏi có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 10 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD =

a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 11 Hàm số y = (x + m)3+ (x + n)3− x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

A. −1

1

Câu 12 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A (−∞; −3] ∪ [3; +∞) B (−∞; 3] C [−3; 3] D (0; 3].

Câu 13 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Trang 2

Câu 14 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

3

1

√ 15

√ 3

2 .

Câu 15 Cho lăng trụ đứng ABC.A

B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′

BC)bằng

600Biết diện tích của tam giác∆A′BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′

A V = a3

3

3

Câu 16 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?

A.

c

→ a

= √2

Câu 17 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

A ln3

3

Câu 18 NếuR−14 f(x)dx= 2 và R4

−1g(x)dx= 3 thì R4

−1[ f (x)+ g(x)]dx bằng

Câu 19 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng

Câu 20 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (−2; −4; −6) B (2; 4; 6) C (1; 2; 3) D (−1; −2; −3).

Câu 21 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:

A y′ = πxπ B y′ = xπ−1 C y′ = 1

πxπ−1 D y′ = πxπ−1

Câu 22 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 23 Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 24

Câu 24 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 25 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 26 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 27 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

A.R f(x)= −sinx + x2

2 + C

Câu 28 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Trang 3

Câu 29 Cho hàm số y = f (x) có đạo hàm f′

(x)= (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 30 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n2= (1; −1; 1) B.→−n3 = (1; 1; 1) C.→−n1 = (−1; 1; 1) D.→−n4 = (1; 1; −1)

Câu 31 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 32 NếuR02 f(x)= 4 thì R2

0[1

2f(x) − 2] bằng

Câu 33 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 34 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|

A |z|= √10 B |z|= 50 C |z|= √33 D |z|= 5√2

Câu 35 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 36 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Parabol B Một đường thẳng C Hai đường thẳng D Đường tròn.

Câu 37 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x − y+ 8 = 0 B x − y+ 4 = 0 C x+ y − 5 = 0 D x+ y − 8 = 0

Câu 38 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z

w là

số thuần ảo thì mệnh đề nào sau đây đúng?

A Tam giác OAB là tam giác đều B Tam giác OAB là tam giác nhọn.

C Tam giác OAB là tam giác vuông D Tam giác OAB là tam giác cân.

Câu 39 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A |z| < 1

3

1

2 < |z| < 3

2.

Câu 40 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 41 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là

Câu 42 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i

trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′

A S = 25

4 .

Câu 43 Tính đạo hàm của hàm số y= log4√x2− 1

A y′= x

(x2− 1)log4e. B y

′ = √ 1

x2− 1 ln 4. C y

(x2− 1) ln 4. D y

2(x2− 1) ln 4.

Trang 4

Câu 44 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)

và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 1 = 0 B 2x+ y − 4z + 5 = 0

C 2x+ y − 4z + 7 = 0 D −2x − y+ 4z − 8 = 0

Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c

Câu 46 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

B D = (−∞; −1] ∪ (1; +∞)

C D = (1; +∞)

D D = (−∞; 0)

Câu 47 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 48 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 250π

3

500π√3

125π√3

400π√3

Câu 49 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 50 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:17

w