LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx − 1nằm bên[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung
A Không tồn tại m B m < 1
3. C m < 0. D 0 < m <
1
3.
Câu 2 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 3 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
2F(2x − 1)+ C
C.R f(2x − 1)dx= 2F(2x − 1) + C D.R f(2x − 1)dx = 2F(x) − 1 + C
Câu 4 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Có một tiệm cận ngang và không có tiệm cận đứng.
B Có một tiệm cận ngang và một tiệm cận đứng .
C Không có tiệm cận ngang và có một tiệm cận đứng.
D Không có tiệm cận.
Câu 5 Cho hình lập phương ABCD.A′
B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
9.
Câu 6 Tìm nghiệm của phương trình 2x = (√3)x
Câu 7 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= 3 B f (−1)= −1 C f (−1)= −5 D f (−1)= −3
Câu 8 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 9 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2−5x+m) > log3(x−2)
có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng
Câu 10 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ
Câu 11 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A m > −4 B −4 < m ≤ −3 C −4 ≤ m < −3 D −4 < m < −3.
Câu 12 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 13 Thể tích khối lập phương có cạnh 3a là:
Trang 2Câu 14 Cho cấp số nhân (un) với u1= −1
2; u7= −32 Tìm q?
Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
C x − 2y − 2z − 4= 0 D −x+ 2y + 2z + 4 = 0
Câu 16 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x − 4)2+ (y + 8)2 = 2√5 B (x+ 4)2+ (y − 8)2 = 2√5
C (x − 4)2+ (y + 8)2 = 20 D (x+ 4)2+ (y − 8)2 = 20
Câu 17 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (−1; −2; −3) C (1; −2; 3) D (−1; 2; 3).
Câu 18 Tiệm cận ngang của đồ thị hàm số y= 2x +1
3x−1 là đường thẳng có phương trình:
A y= 1
3
Câu 19 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x3− 3x − 5 C y= x4− 3x2+ 2 D y= x−3
x−1
Câu 20 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
Câu 21 NếuR4
−1 f(x)dx= 2 và R4
−1g(x)dx= 3 thì R4
−1[ f (x)+ g(x)]dx bằng
Câu 22 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 23 NếuR02 f(x)dx= 4 thì R2
0
h1
2f(x) − 2idx bằng
Câu 24 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 25 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?
Câu 26 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′ = 1
′ = ln3
xln3.
Câu 27 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= lnx B F′(x)= 2
′(x)= −1
x2
Câu 28 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 29 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
2 a
√ 2
4 a
√ 2
6 a
Trang 3Câu 30 Có bao nhiêu số nguyên x thỏa mãn log3x
2− 16
343 < log7x2− 16
Câu 31 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (−1; −2; −3) C (−1; 2; 3) D (1; −2; 3).
Câu 32 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
A. 1
Câu 33 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (2; 4; 6) B (−2; −4; −6) C (1; 2; 3) D (−1; −2; −3).
Câu 34 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức
P= |z1+ z2|
A P=
√
3
√ 2
Câu 35 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 3√5 B max T = 2√10 C max T = 2√5 D max T = 3√2
Câu 36 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một đường thẳng B Một Parabol C Một Elip D Một đường tròn.
Câu 37 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 38 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng
5π
2 .
Câu 39 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Đường tròn B Một đường thẳng C Hai đường thẳng D Parabol.
Câu 40 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là
Câu 41 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 3 B max |z|= 4 C max |z|= 7 D max |z|= 6
Câu 42 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2
nhỏ nhất Tính tổng a+ b + c
Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 45 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vuông Diện tích toàn phần của (T ) là
Trang 4Câu 46 Cho hình lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′
A 3a3√
3
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(2
3;
7
3;
21
5
3;
11
3 ;
17
4
3;
10
3 ;
16
7
3;
10
3 ;
31
6 ).
Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3√5
a3√15
a3√15
Câu 49 Biết
π 2 R
0
sin 2xdx= ea Khi đó giá trị a là:
Câu 50 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Trang 5HẾT