1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (646)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 119,29 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết 5∫ 1 dx 2x − 1 = ln T Giá trị của T là A T = √ 3 B T = 81 C T = 9 D T = 3 Câ[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Biết

5

R

1

dx 2x − 1 = ln T Giá trị của T là:

Câu 2 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 3 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − 2y − 2 = 0 B (P) : x − y + 2z = 0 C (P) : x − y − 2z = 0 D (P) : x + y + 2z = 0.

Câu 4 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab2)= ln a + 2 ln b B ln(ab2)= ln a + (ln b)2

b)= ln a

ln b.

Câu 5 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20

Câu 6 Tính nguyên hàmR cos 3xdx

A. 1

3sin 3x+ C D −3 sin 3x+ C

Câu 7 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 9 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M

Câu 10 Thể tích khối lập phương có cạnh 3a là:

Câu 11 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?

A.→−b ⊥→−a B.→−b ⊥→−c C.

→ a

→ c

= √3

Câu 12 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= −x3+ 3x2+ 2 B y= −x4+ 2x2+ 2 C y= x4− 2x2+ 2 D y= x3− 3x2+ 2

Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 14 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Trang 2

Câu 15 Biết

3 R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2 [ f (x)+ g(x)]dx bằng

Câu 16 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(−3

4;

1

3

4;

1

3

4;

3

3

4;

1

2; −1).

Câu 17 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?

Câu 18 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

2

Câu 19 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 20 Trên tập hợp số phức, xét phương trình z2 − 2(m+ 1)z + m2 = 0(m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn |z1|+ |z2|= 2?

Câu 21 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16

343 < log7 x2−16

27 ?

Câu 22 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

Câu 23 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

Câu 24 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

Câu 25 NếuR2

0 f(x)dx= 4 thì R02h1

2f(x) − 2idx bằng

Câu 26 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 27 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 28 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 29 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

11

3 .

Câu 30 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 31 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

√ 3

√ 3

√ 2

2 a.

Trang 3

Câu 32 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A N(2; 1; 2) B M(2; −1; −2) C P(1; 2; 3) D Q(1; 2; −3).

Câu 33 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 34 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′

là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2

⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √4

2

1

1

2.

Câu 35 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 6 B max |z|= 3 C max |z|= 4 D max |z|= 7

Câu 36 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một Elip B Một Parabol C Một đường tròn D Một đường thẳng Câu 37 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Câu 38 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x − 5)2+ (y − 4)2 = 125 B (x − 1)2+ (y − 4)2= 125

Câu 39 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= 2 B max |z|= 1 C max |z|= √2 D max |z|= 3

Câu 40 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 41 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

2 .

Câu 42 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 3√2 B max T = 2√10 C max T = 3√5 D max T = 2√5

Câu 43 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 44 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′

B′C′

A 4a3√

3

Câu 45 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Trang 4

Câu 46 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)

và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 7 = 0 B −2x − y+ 4z − 8 = 0

C 2x+ y − 4z + 5 = 0 D 2x+ y − 4z + 1 = 0

Câu 47 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 B (x − 1)2+ (y + 2)2+ (z − 4)2= 1

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y − 2)2+ (z − 4)2= 2

Câu 49 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m > 1 hoặc m < −1

3 B m > 1. C m > 2 hoặc m < −1 D m < −2.

Câu 50 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. a

15

3a√30

3a√6

3a√6

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:17

🧩 Sản phẩm bạn có thể quan tâm

w