LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 2 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
a
√ 15
√
√ 5
6 .
Câu 3 Cho hàm số y=
x
3
− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị
Câu 4 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox
A V = 32π
3 .
Câu 5 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung
A m < 1
3. B 0 < m <
1
3. C m < 0. D Không tồn tại m.
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x + y + 2z = 0 B (P) : x − 2y − 2 = 0 C (P) : x − y − 2z = 0 D (P) : x − y + 2z = 0.
Câu 7 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 8 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Không có tiệm cận ngang và có một tiệm cận đứng.
B Không có tiệm cận.
C Có một tiệm cận ngang và một tiệm cận đứng .
D Có một tiệm cận ngang và không có tiệm cận đứng.
Câu 9 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?
Câu 10 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= −6
5 −
27
5 + 6
5 −
6
5+ 27
5 i.
Câu 11 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần
lượt được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Trang 2Câu 12 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
Câu 13 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 ≤ m < −3 B −4 < m < −3 C −4 < m ≤ −3 D m > −4.
Câu 14 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=
a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A −x+ 2y + 2z + 4 = 0 B 3x − 4y+ 6z + 34 = 0
C x − 2y − 2z − 4= 0 D x+ 2y + 2z + 8 = 0
Câu 16 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= x4− 2x2+ 2 B y= −x4+ 2x2+ 2 C y= x3− 3x2+ 2 D y= −x3+ 3x2+ 2
Câu 17 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC)bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
√ 2
√ 2
6 a3
Câu 18 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 19 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 20 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 1
3
Câu 21 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?
A.R f(x)dx= − sin x + x2
2 + C
Câu 22 NếuR−14 f(x)dx= 2 và R4
−1g(x)dx= 3 thì R4
−1[ f (x)+ g(x)]dx bằng
Câu 23 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 24 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
3
Câu 25 Trong không gian Oxyz, cho đường thẳng d : x−12 = y−2
−1 = z +3
−2 Điểm nào dưới đây thuộc d?
A M(2; −1; −2) B N(2; 1; 2) C P(1; 2; 3) D Q(1; 2; −3).
Câu 26 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Trang 3Câu 27 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
1
Câu 28 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 29 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 30 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
A.
√
2
√ 3
√
√ 3
3 a.
Câu 31 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
4 a
√ 2
6 a
√ 2
2 a
3
Câu 32 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1= (−1; 1; 1) B.→−n2 = (1; −1; 1) C.→−n3 = (1; 1; 1) D.→−n4 = (1; 1; −1)
Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (−1; 2; 3) C (−1; −2; −3) D (1; −2; 3).
Câu 34 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 3 B max |z|= 4 C max |z|= 6 D max |z|= 7
Câu 35 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Một đường thẳng B Đường tròn C Parabol D Hai đường thẳng.
Câu 36 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A x − y+ 4 = 0 B x − y+ 8 = 0 C x+ y − 8 = 0 D x+ y − 5 = 0
Câu 37 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 38 Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − z
z −2i
= 2 ?
A Một đường tròn B Một đường thẳng C Một Elip D Một Parabol.
Câu 39 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A |z| < 1
1
2 < |z| < 3
3
2 ≤ |z| ≤ 2.
Câu 40 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác nhọn B Tam giác OAB là tam giác đều.
C Tam giác OAB là tam giác cân D Tam giác OAB là tam giác vuông.
Trang 4Câu 41 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 42 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′
là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 15
4 .
Câu 43 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 250π
√
3
400π√3
500π√3
125π√3
Câu 44 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 1 hoặc m < −1
3 B m > 1. C m > 2 hoặc m < −1 D m < −2.
Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay ⇔ x= y B Nếu a < 1 thì ax > ay ⇔ x< y
C Nếu a > 1 thì ax > ay ⇔ x> y D Nếu a > 0 thì ax > ay ⇔ x< y
Câu 46 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Câu 47 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
(x2− 1) ln 4. B y
2(x2− 1) ln 4. C y
(x2− 1)log4e. D y
′ = √ 1
x2− 1 ln 4
Câu 48 Tính đạo hàm của hàm số y= 5x +cos3x
A y′ = (1 − sin 3x)5x +cos3xln 5 B y′ = (1 + 3 sin 3x)5x +cos3xln 5
C y′ = 5x +cos3xln 5 D y′ = (1 − 3 sin 3x)5x +cos3xln 5.
Câu 49 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
64.
Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A. 1
√ 15
√ 15
√ 5
3 .
Trang 5HẾT