1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (598)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 122,24 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tập nghiệm của bất phương trình log1 2 (x − 1) ≥ 0 là A (1; 2] B (1; 2) C [2;+∞)[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 2 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1

(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim

t→ +∞S(t).

A ln 2+ 1

1

1

1

2.

Câu 3 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?

A Có một tiệm cận ngang và một tiệm cận đứng .

B Không có tiệm cận ngang và có một tiệm cận đứng.

C Có một tiệm cận ngang và không có tiệm cận đứng.

D Không có tiệm cận.

Câu 4 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 5 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. m

2− 12

m2− 3

m2− 12

4m2− 3

Câu 6 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 7 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

√ 5

a

√ 5

a

√ 15

Câu 8 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD

A. V

V

V

V

4.

Câu 9 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A [−3; 3] B (−∞; −3] ∪ [3; +∞) C (0; 3] D (−∞; 3].

Câu 10 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Câu 11 Hàm số y = (x + m)3+ (x + n)3− x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

1

4 .

Câu 12 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?

5π.

Trang 2

Câu 13 Cho hàm số y= f (x) có đạo hàm f′

(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng

Câu 14 Cho hàm số f (x) Biết f (0)= 4 và f′

(x)= 2 sin2

x+ 1, ∀x ∈ R, khi đó

π 4 R

0

f(x) bằng

A. π2+ 16π − 16

16

Câu 15 Với a là số thực dương tùy ý, log5(5a) bằng

A 5 − log5a B 1 − log5a C 1+ log5a D 5+ log5a

Câu 16 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD= a

3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 17 Trong không gian Oxyz, cho đường thẳng d : x−12 = y−2

−1 = z +3

−2 Điểm nào dưới đây thuộc d?

A Q(1; 2; −3) B N(2; 1; 2) C P(1; 2; 3) D M(2; −1; −2).

Câu 18 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 19 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 20 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?

Câu 21 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

Câu 22 NếuR2

0 f(x)dx= 4 thì R02h1

2f(x) − 2idx bằng

Câu 23 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?

2 + C

C.R f(x)dx= sin x + x 2

Câu 24 NếuR4

−1 f(x)dx= 2 và R−14 g(x)dx= 3 thì R−14[ f (x)+ g(x)]dx bằng

Câu 25 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′ = ln 3

x B y′ = 1

x ln 3 C y′ = 1

x D y′ = − 1

x ln 3

Câu 26 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 27 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

Câu 28 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:

A y′ = xπ−1 B y′ = πxπ−1 C y′ = πxπ D y′ = 1πxπ−1

Trang 3

Câu 29 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 30 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

A. 2

Câu 31 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 32 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 18

4

1

9

35.

Câu 33 NếuR2

0 f(x)= 4 thì R2

0[1

2f(x) − 2] bằng

Câu 34 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

A.

Câu 35 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 36 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 3√5 B max T = 2√10 C max T = 2√5 D max T = 3√2

Câu 37 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x − 5)2+ (y − 4)2 = 125 B (x+ 1)2+ (y − 2)2= 125

Câu 38 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 6 B max |z|= 3 C max |z|= 4 D max |z|= 7

Câu 39 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là

Câu 40 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 41 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i

trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′

A S = 15

2 .

Câu 42 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức

P= |z1+ z2|

√ 2

√ 3

2 .

Trang 4

Câu 43 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

2

5a√3

5a√3

5a√2

Câu 44 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 45 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Câu 46 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 47 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R

2 (x2− 2x)dx

B.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

C.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

D.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên

đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M

A M(5

3;

11

3 ;

17

2

3;

7

3;

21

4

3;

10

3 ;

16

7

3;

10

3 ;

31

6 ).

Câu 49 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m

Câu 50 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 250π

3

400π√3

500π√3

125π√3

Trang 5

HẾT

Ngày đăng: 05/04/2023, 18:29

🧩 Sản phẩm bạn có thể quan tâm