LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y = ( √ π)sin 2x trên R bằng? A 0 B 1 C √ π D π Câu 2[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 2 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho
có diện tích lớn nhất bằng?
√ 3
√ 3
2) D 3√3(m2)
Câu 3 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 4 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (−3; 1) B Hàm số đồng biến trên khoảng (−3; 1).
C Hàm số nghịch biến trên khoảng (−∞; −3) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 5 Cho hàm số y= 2x+ 2017
x
+ 1 (1) Mệnh đề nào dưới đây là đúng?
A Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng
B Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng
C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1
D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x= −1, x = 1
Câu 6 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Không có tiệm cận.
B Có một tiệm cận ngang và một tiệm cận đứng .
C Không có tiệm cận ngang và có một tiệm cận đứng.
D Có một tiệm cận ngang và không có tiệm cận đứng.
Câu 7 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?
Câu 8 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a
3
6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho
Câu 9 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 3
5−
6
5 + 6
5 −
27
5+ 27
5 i.
Câu 10 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x+ 4)2+ (y − 8)2 = 20 B (x − 4)2+ (y + 8)2= 20
C (x − 4)2+ (y + 8)2 = 2√5 D (x+ 4)2+ (y − 8)2= 2√5
Câu 11 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.
Trang 2Câu 12 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(2; −6; 4) B M(5; 5; 0) C M(−2; 6; −4) D M(−2; −6; 4).
Câu 13 Cho hàm số f (x) Biết f (0)= 4 và f′(x)= 2 sin2x+ 1, ∀x ∈ R, khi đó
π 4 R
0
f(x) bằng
A. π2− 4
Câu 14 Biết
3 R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2 [ f (x)+ g(x)]dx bằng
Câu 15 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln x B y′ = x.2023x−1 C y′ = 2023x
ln 2023
Câu 16 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
4x
−1
1
2(x
2+ 1)
1
2(2x)
1
2
Câu 17 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
Câu 18 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 19 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16
343 < log7 x2−16
27 ?
Câu 20 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
Câu 21 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?
Câu 22 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 23 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3x2+ y2+ x + log2
x2+ y2≤ log3x+ log2
x2+ y2+ 24x
?
Câu 24 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x−3
x−1 C y= x3− 3x − 5 D y= x4− 3x2+ 2
Câu 25 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC)bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
√ 2
√ 2
4 a3 D. √2a3
Câu 26 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
Trang 3Câu 27 NếuR2
0 f(x)= 4 thì R2
0[1
2f(x) − 2] bằng
Câu 28 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
1
3.
Câu 29 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16π
16π
16
16
15.
Câu 30 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 31 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
Câu 32 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 33 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
A.R f(x)= sinx + x2
2 + C
Câu 34 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 35 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác nhọn B Tam giác OAB là tam giác cân.
C Tam giác OAB là tam giác đều D Tam giác OAB là tam giác vuông.
Câu 36 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= √10 B |z|= 5√2 C |z|= √33 D |z|= 50
Câu 37 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng
A. 5π
5π
2 .
Câu 38 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= √2 B max |z|= 3 C max |z|= 2 D max |z|= 1
Câu 39 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một Parabol B Một đường tròn C Một đường thẳng D Một Elip.
Câu 40 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Trang 4Câu 41 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
Câu 42 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 3√5 B max T = 2√10 C max T = 2√5 D max T = 3√2
Câu 43 Cho P= 2a
4b8c, chọn mệnh đề đúng trong các mệnh đề sau
A P = 2a +b+c. B P = 2a +2b+3c. C P= 26abc D P= 2abc
Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
B.
3
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3 R
2
|x2− 2x|dx
D.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
Câu 46 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị F(0) bằng:
A. 6π
1
5ln 2+ 6π
1
4ln 2+ 3π
2 .
Câu 47 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
5
a3
√ 15
a3
√ 15
a3
√ 15
16 .
Câu 48 Cho bất phương trình 3
√ 2(x−1)+1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình đúng với mọi x ∈ (4;+∞)
B Bất phương trình vô nghiệm.
C Bất phương trình đúng với mọi x ∈ [ 1; 3].
D Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
Câu 49 Hàm số nào trong các hàm số sau đồng biến trên R.
x+ 2 .
Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
2 + C
Trang 5HẾT