1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (651)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 118,51 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề nào dưới đây đúng? A Hàm số nghịch bi[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng (−3; 1).

C Hàm số nghịch biến trên khoảng (−3; 1) D Hàm số nghịch biến trên khoảng (−∞; −3) Câu 2 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 3 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 4 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. 4m

2− 3

m2− 12

m2− 3

m2− 12

Câu 5 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − 2y − 2 = 0 B (P) : x − y + 2z = 0 C (P) : x − y − 2z = 0 D (P) : x + y + 2z = 0.

Câu 6 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A Không tồn tại m B m < 0 C m < 1

3. D 0 < m <

1

3.

Câu 7 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(1; 2; 0) B A(0; 2; 3) C A(1; 0; 3) D A(0; 0; 3).

Câu 9 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y= x2 và đường thẳng y= mx với m , 0 Hỏi có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 10 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : x − 2z + 5 = 0 B (P) : y − z + 2 = 0 C (P) : y + z − 1 = 0 D (P) : x − 2y + 1 = 0.

Câu 11 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Câu 12 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD = a

3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 13 Đường thẳng (∆) : x −1

2 = y+ 2

−1 không đi qua điểm nào dưới đây?

A (3; −1; −1) B (−1; −3; 1) C (1; −2; 0) D A(−1; 2; 0).

Trang 2

Câu 14 Biết

3 R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2 [ f (x)+ g(x)]dx bằng

Câu 15 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= x4− 2x2+ 2 B y= x3− 3x2+ 2 C y= −x3+ 3x2+ 2 D y= −x4+ 2x2+ 2

Câu 16 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A [−3; 3] B (−∞; −3] ∪ [3; +∞) C (−∞; 3] D (0; 3].

Câu 17 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 18 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 19 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

Câu 20 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16

9

Câu 21 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n3 = (1; 1; 1) B.→−n4 = (1; 1; −1) C.→−n1 = (−1; 1; 1) D.→−n2 = (1; −1; 1)

Câu 22 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC)bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

√ 2

√ 2

2 a3

Câu 23 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 24 Có bao nhiêu số nguyên x thỏa mãn log3 x2343−16 < log7 x2−16

27 ?

Câu 25 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 26 NếuR−14 f(x)= 2 và R4

−1g(x)= 3 thì R4

−1[ f (x)+ g(x)] bằng

Câu 27 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 18

4

9

1

7.

Câu 28 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

2

3.

Câu 29 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

2

√ 3

2√3

√ 2a

Câu 30 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Trang 3

Câu 31 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 32 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; −2; −3) B (1; −2; 3) C (−1; 2; 3) D (1; 2; −3).

Câu 33 Trong không gian Oxyz, cho đường thẳng d : x −1

2 = y −2

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A M(2; −1; −2) B P(1; 2; 3) C N(2; 1; 2) D Q(1; 2; −3).

Câu 34 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x − 5)2+ (y − 4)2 = 125 B (x+ 1)2+ (y − 2)2= 125

Câu 35 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A. 3

2 ≤ |z| ≤ 2. B |z| <

1

1

2 < |z| < 3

2.

Câu 36 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 7 B max |z|= 3 C max |z|= 6 D max |z|= 4

Câu 37 Tìm tập hợp các điểm M biểu diễn số phức z sao cho

z − z

z −2i

= 2 ?

A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol.

Câu 38 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là

Câu 39 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Đường tròn B Hai đường thẳng C Một đường thẳng D Parabol.

Câu 40 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 41 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2 ⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √2

5

13

1

√ 2

Câu 42 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một Elip B Một Parabol C Một đường thẳng D Một đường tròn.

Câu 43 Cho P= 2a

4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P= 26abc B P= 2abc C P = 2a +2b+3c. D P = 2a +b+c.

Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)

và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng 3

√ 2

2 Giả sử phương trình mặt phẳng (P) có dạng

ax+ by + cz + 2 = 0 Tính giá trị abc

Câu 45 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Trang 4

Câu 46 Biết

π 2 R

0 sin 2xdx= ea Khi đó giá trị a là:

Câu 47 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 48 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Câu 49 Chọn mệnh đề đúng trong các mệnh đề sau:

A Nếu a < 1 thì ax > ay ⇔ x< y B Nếu a > 1 thì ax > ay ⇔ x> y

C Nếu a > 0 thì ax > ay

⇔ x< y D Nếu a > 0 thì ax = ay

⇔ x= y

Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:17

🧩 Sản phẩm bạn có thể quan tâm