1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (648)

5 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 119,33 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp chữ nhật ABCD A′B′C′D′ có AB = a, AD = a √ 3 Tính khoảng cách giữa h[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

2

√ 3

a

√ 3

4 .

Câu 2 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20

Câu 3 Tìm nghiệm của phương trình 2x = (√3)x

Câu 4 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 32π

3.

Câu 5 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

A. a

5

a

√ 15

a

√ 5

√ 15

Câu 6 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

B Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

D Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

Câu 7 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

A.R f(2x − 1)dx= 1

2F(2x − 1)+ C B. R f(2x − 1)dx = F(2x − 1) + C

C.R f(2x − 1)dx= 2F(x) − 1 + C D.R f(2x − 1)dx = 2F(2x − 1) + C

Câu 8 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1

(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim

t→ +∞S(t).

A ln 2 − 1

1

2. C ln 2+ 1

1

2 − ln 2.

Câu 9 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : x − 2y + 1 = 0 B (P) : x − 2z + 5 = 0 C (P) : y − z + 2 = 0 D (P) : y + z − 1 = 0.

Câu 10 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (−2; 3; 1) B.→−n = (2; −3; 4) C.→−n = (−2; 3; 4) D.→−n = (2; 3; −4)

Trang 2

Câu 11 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 209

1

8

1

210.

Câu 12 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Câu 13 Thể tích khối lập phương có cạnh 3a là:

Câu 14 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ

Câu 15 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 16 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x − 4)2+ (y + 8)2 = 2√5 B (x+ 4)2+ (y − 8)2 = 2√5

C (x − 4)2+ (y + 8)2 = 20 D (x+ 4)2+ (y − 8)2 = 20

Câu 17 Tiệm cận ngang của đồ thị hàm số y= 2x +1

3x−1 là đường thẳng có phương trình:

A y= 1

3 C y= −1

3 D y= −2

3

Câu 18 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC)bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

√ 2

√ 2

2 a3

Câu 19 Phần ảo của số phức z= 2 − 3i là

Câu 20 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn

log3x2+ y2+ x + log2

x2+ y2

≤ log3x+ log2

x2+ y2+ 24x

?

Câu 21 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

2

√ 3

√ 3

3 a

Câu 22 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?

A.R f(x)dx= sin x + x2+ C B. R f(x)dx= − sin x + x 2

2 + C

C.R f(x)dx= sin x + x 2

Câu 23 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 18

35

Câu 24 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x4− 3x2+ 2 B y= x2− 4x+ 1 C y= x3− 3x − 5 D y= x−3

x−1

Câu 25 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Trang 3

Câu 26 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

x= 5 + 2t

y= 5 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + 3t

z= −1 + t

Câu 27 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

3πrl2

Câu 28 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 29 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 30 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

3

√ 2

2

√ 3

3 a.

Câu 31 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; −2; 3) B (1; 2; −3) C (−1; −2; −3) D (−1; 2; 3).

Câu 34 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= √2 B max |z|= 2 C max |z|= 3 D max |z|= 1

Câu 35 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 36 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức

P= |z1+ z2|

√ 3

√ 2

2 .

Câu 37 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2 ⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √4

13

1

√ 2

5

Câu 38 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z

w là

số thuần ảo thì mệnh đề nào sau đây đúng?

Trang 4

A Tam giác OAB là tam giác cân B Tam giác OAB là tam giác nhọn.

C Tam giác OAB là tam giác đều D Tam giác OAB là tam giác vuông.

Câu 39 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một Parabol B Một đường thẳng C Một đường tròn D Một Elip.

Câu 40 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Câu 41 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Một đường thẳng B Parabol C Hai đường thẳng D Đường tròn.

Câu 42 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600

Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)

Câu 44 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)

và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 1 = 0 B 2x+ y − 4z + 7 = 0

C −2x − y+ 4z − 8 = 0 D 2x+ y − 4z + 5 = 0

Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)

và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3

√ 2

2 Giả sử phương trình mặt phẳng (P) có dạng

ax+ by + cz + 2 = 0 Tính giá trị abc

Câu 46 Cho P= 2a

4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P = 26abc B P = 2abc C P= 2a +b+c. D P= 2a +2b+3c.

Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y + 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 1

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 D (x − 1)2+ (y − 2)2+ (z − 4)2= 3

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c

Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 50 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 17

πa2√ 17

πa2√ 15

Trang 5

HẾT

Ngày đăng: 05/04/2023, 18:29