LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho mặt cầu (S ) x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặ[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(0; 1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; −1; 2).
Câu 3 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′
; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1 V2 = 1
V1 V2 = 1
V1 V2 = 1
Câu 4 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(a
b)= ln a
C ln(ab2)= ln a + 2 ln b D ln(ab2)= ln a + (ln b)2
Câu 5 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
C.R f(2x − 1)dx= 1
Câu 6 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Có một tiệm cận ngang và một tiệm cận đứng .
B Có một tiệm cận ngang và không có tiệm cận đứng.
C Không có tiệm cận.
D Không có tiệm cận ngang và có một tiệm cận đứng.
Câu 7 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung
A m < 0 B 0 < m < 1
3. C m <
1
3. D Không tồn tại m.
Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 9 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?
Câu 10 Tính đạo hàm của hàm số y= 2023x
A y′= x.2023x−1 B y′ = 2023x
ln 2023 D y′ = 2023x
ln x
Câu 11 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng
Câu 12 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 < m < −3 B −4 ≤ m < −3 C −4 < m ≤ −3 D m > −4.
Trang 2Câu 13 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
5π.
Câu 14 Tìm nguyên hàm của hàm số f (x)= cos 3x
C.R cos 3xdx= sin 3x
Câu 15 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 16 Cho lăng trụ đứng ABC.A′
B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′
BC)bằng
600Biết diện tích của tam giác∆A′
BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′
B′C′
A V = a3
√
3
3
Câu 17 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng
A.
√
3
√ 2
√ 3
3 a
Câu 18 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 19 Cho cấp số nhân (un)với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
Câu 20 Xét các số phức z thỏa mãnz2− 3 − 4i= 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng
Câu 21 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng
A. 1
Câu 22 Cho hàm số y= ax +b
cx +d có đồ thị là đường cong trong hình bên Tọa độ giao điểm của đồ thị hàm
số đã cho và trục hoành là
Câu 23 Cho hàm số y= f (x) có đạo hàm f′(x) = (x − 2)2(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 24 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16
343 < log7 x2−16
27 ?
Câu 25 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z+ 2i| = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 26 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 27 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; −2; 3) B (−1; −2; −3) C (1; 2; −3) D (−1; 2; 3).
Câu 28 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Trang 3Câu 29 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
3
Câu 30 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 1
′(x)= 2
x2
Câu 31 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
Câu 32 Có bao nhiêu số nguyên x thỏa mãn log3x
2− 16
343 < log7x2− 16
Câu 33 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 34 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
4 .
Câu 35 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn Tính bán kính r của đường tròn đó
Câu 36 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 37 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x − 5)2+ (y − 4)2 = 125 B x= 2
C (x − 1)2+ (y − 4)2 = 125 D (x+ 1)2+ (y − 2)2= 125
Câu 38 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A. 1
2 < |z| < 3
2. B |z| <
1
3
2 ≤ |z| ≤ 2. D |z| > 2.
Câu 39 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 6 B max |z|= 4 C max |z|= 7 D max |z|= 3
Câu 40 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
Câu 41 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 3√2 B max T = 2√5 C max T = 2√10 D max T = 3√5
Câu 42 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác đều B Tam giác OAB là tam giác vuông.
C Tam giác OAB là tam giác cân D Tam giác OAB là tam giác nhọn.
Trang 4Câu 43 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
3.
Câu 44 Cho hình lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′
A 4a3√
3
Câu 45 Biết
π 2 R
0 sin 2xdx= ea Khi đó giá trị a là:
Câu 46 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax > ay ⇔ x< y B Nếu a < 1 thì ax > ay ⇔ x< y
C Nếu a > 0 thì ax = ay ⇔ x= y D Nếu a > 1 thì ax > ay ⇔ x> y
Câu 47 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
3
5a√3
5a
√ 2
5a
√ 2
Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600
Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 B (x − 1)2+ (y − 2)2+ (z − 4)2= 1
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Trang 5HẾT