1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (621)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Định dạng
Số trang 5
Dung lượng 124,22 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số y = ( √ 3 − 1) x có dạng nào trong các hình H1, H2, H3, H4[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?

Câu 2 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

6 .

Câu 3 Bất đẳng thức nào sau đây là đúng?

A (√3 − 1)e < (√3 − 1)π B (√3+ 1)π > (√3+ 1)e

Câu 4 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (0; 2; 0) B (0; 6; 0) C (−2; 0; 0) D (0; −2; 0).

Câu 5 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x

x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?

A 1 < m , 4 B −4 < m < 1 C ∀m ∈ R D m < 3

2.

Câu 6 Kết quả nào đúng?

A.R sin2xcos x= −sin3x

C.R sin2xcos x= sin3x

Câu 7 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại

Câu 9 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?

Câu 10 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 11 Đạo hàm của hàm số y= (2x + 1)−

1

3 trên tập xác định là

A 2(2x+ 1)−

1

3(2x+ 1)−

4

3

C −2

3(2x+ 1)−

4

1

3 ln(2x+ 1)

Câu 12 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua

Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB

Trang 2

Câu 13 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Câu 14 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A x5+ sin x + C B 5x5− sin x+ C C 5x5+ sin x + C D x5− sin x+ C

Câu 15 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P = 1

14.

Câu 16 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= 2x − 2

1+ x

x+ 1.

Câu 17 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= 5 B |z1+ z2|= 1 C |z1+ z2|= √5 D |z1+ z2|= √13

Câu 18 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 19 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= 21009i B (1+ i)2018 = −21009i C (1+ i)2018 = 21009 D (1+ i)2018 = −21009

Câu 20 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 21 Những số nào sau đây vừa là số thực và vừa là số ảo?

A 0 và 1 B Không có số nào C Chỉ có số 1 D C.Truehỉ có số 0.

Câu 22 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 23 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 5

34

√ 34

3 .

Câu 24 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A z là số thuần ảo B z= 1

Câu 25 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 26 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

2 + C

C.R f(x)= −sinx + x2

Câu 27 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16

16

16π

16π

9 .

Câu 28 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; −2; 3) B (−1; −2; −3) C (1; 2; −3) D (−1; 2; 3).

Trang 3

Câu 29 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 30 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 31 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 32 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 5 + 2t

y= 5 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

x= 1 + 2t

y= −1 + 3t

z= −1 + t

Câu 33 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1

2 Giá trị của u3bằng

A. 1

7

1

4.

Câu 34 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 35 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

Câu 36 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

C Phần thực của z là số âm D z là một số thực không dương.

Câu 37 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1

+ 1

z2

= 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

√ 2

1

√ 2

Câu 38 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A.

2

1

1

2.

Câu 39 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 40 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 41 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 0;1

4

!

4;+∞

!

4;

5 4

!

2;

9 4

!

Trang 4

Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 44 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 45 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 46 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 47 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 3mn+ n + 4

C log22250= 2mn+ 2n + 3

Câu 48 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

A P = 2logae B P = 2 + 2(ln a)2

Câu 49 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

12.

Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A.

15

√ 5

√ 15

1

2.

Trang 5

HẾT

Ngày đăng: 05/04/2023, 16:19

w