1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (621)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,56 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P) z[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

A x= 5 + 2ty = 5 + tz = 2 − 4t B x= 5 + ty = 5 + 2tz = 2

Câu 2 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường tròn B Đường parabol C Đường elip D Đường hypebol.

Câu 3 Cho số thực dươngm Tính I =

m R 0

dx

x2+ 3x + 2 theo m?

A I = ln( m+ 2

2m+ 2). B I = ln(

m+ 1

m+ 2). C I = ln(

m+ 2

m+ 1). D I = ln(

2m+ 2

m+ 2 ).

Câu 4 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?

Câu 5 Tính I =R1

0

3

√ 7x+ 1dx

A I = 21

28.

Câu 6 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x

A S = 1

6.

Câu 7 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 8 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x

x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?

A 1 < m , 4 B −4 < m < 1 C ∀m ∈ R D m < 3

2.

Câu 9 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(5; 9; 5) B C(1; 5; 3) C C(3; 7; 4) D C(−3; 1; 1).

Câu 10 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1

V2

A. V1

V2 = 1

V1

V2 = 1

V1

V2 = 1

3.

Câu 11 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 12 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Trang 2

Câu 13 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. m

2− 12

4m2− 3

m2− 3

m2− 12

Câu 14 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông

với cạnh huyền bằng 2a Tính thể tích của khối nón

A. π.a3

4π√2.a3

2π.a3

π√2.a3

Câu 15 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a

3

6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho

Câu 16 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1

B Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

C Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

Câu 17 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 18 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 19 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 20 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 5

34

√ 34

3 . D |z|= √34

Câu 21 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 22 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 23 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 24 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là−3 và phần ảo là −2i B Phần thực là −3 và phần ảo là−2.

C Phần thực là3 và phần ảo là 2 D Phần thực là 3 và phần ảo là 2i.

Câu 25 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 26 Một công ty chuyên sản xuất gỗ muốn thiết kế các thùng đựng hàng có dạng hình lăng trụ tứ

giác đều không nắp, có thể tích là 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng sao cho tổng S của diện tích xung quanh và diện tích mặt đáy là nhỏ nhất, S bằng

A 106, 25dm2 B 50√5dm2 C 125dm2 D 75dm2

Trang 3

Câu 27 Họ nguyên hàm của hàm số f (x)= (2 ln x+ 3)3

A. 2 ln x+ 3

Câu 28 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:

A loga(xy)= logax.logay B logaxn= log

a

1 n

x, (x > 0, n , 0)

C logaxcó nghĩa với ∀x ∈ R D loga1= a và logaa= 0

Câu 29 Tập xác định của hàm số y= logπ(3x− 3) là:

Câu 30 Cho hình chóp S ABCcó S A vuông góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d

BAC= 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC

A V = 5

3 B V = 20

√ 5πa3

√ 5

6πa3

Câu 31 Rút gọn biểu thức M= 1

logax + 1

loga2x+ + 1

logakx ta được:

A M= k(k+ 1)

logax . B M= k(k+ 1)

3logax . C M = k(k+ 1)

2logax . D M = 4k(k+ 1)

logax .

Câu 32 Cho

4 R

−1

f(x)dx= 10 vàR4

1

f(x)dx= 8 TínhR1

−1

f(x)dx

Câu 33 Cho hình chóp S ABC có S A⊥(ABC), S A = a√3 Tam giác ABC vuông cân tại B, AC = 2a Thể tích khối chóp S ABC là

A. 2a

3√

3

a3

√ 3

3√

3√ 3

3 .

Câu 34 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 35 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 36 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 7

√ 2

√ 6

√ 2

√ 5

5 .

Câu 37 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 38 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 39 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 1

2 < |z| < 3

3

2 < |z| < 2 C 2 < |z| < 5

5

2 < |z| < 7

2.

Câu 40 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 2 B |w|min= 1 C |w|min = 1

2. D |w|min = 3

2.

Trang 4

Câu 41 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 42 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 43 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ 2n + 3

C log22250= 2mn+ n + 2

Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

15

a3

√ 15

a3

√ 15

a3

√ 5

Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

B.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

D.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R 2 (x2− 2x)dx

Câu 46 Hàm số nào trong các hàm số sau đồng biến trên R.

x+ 2 .

Câu 47 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 29

27

25

23

4 .

Câu 48 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 2

C (x − 1)2+ (y + 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y − 2)2+ (z − 4)2= 3

Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:

A Nếu a > 0 thì ax = ay

⇔ x= y B Nếu a < 1 thì ax > ay

⇔ x< y

C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a > 1 thì ax > ay ⇔ x> y

Trang 5

HẾT

Ngày đăng: 04/04/2023, 14:17

w