1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (878)

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 126,35 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3 + 4x = (3 − y[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < π thì y > 1 − 4π2 B Nếu 0 < x < 1 thì y < −3.

C Nếux= 1 thì y = −3 D Nếux > 2 thìy < −15.

Câu 2 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A a−√3< b−√3 B ea > eb C. √5

a< √5

2> b√2

Câu 3 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = 3

B |→−u |= √3 C |→−u |= 9 D |→−u |= 1

Câu 4 Kết quả nào đúng?

A.R sin2xcos x= cos2x sin x + C B. R sin2xcos x= −cos2x sin x + C

C.R sin2xcos x= sin3x

Câu 5 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

6 .

Câu 6 Cho số thực dươngm Tính I =

m R 0

dx

x2+ 3x + 2 theo m?

A I = ln(2m+ 2

m+ 2 ). B I = ln(

m+ 1

m+ 2). C I = ln(

m+ 2

m+ 1). D I = ln(

m+ 2 2m+ 2).

Câu 7 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?

A loga(x − 2)2 = 2loga(x − 2) B alogax = x

C loga2x= 1

2= 2logax

Câu 8 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC = a2

√ 3b2− a2

√ 3a2b

12 .

C VS.ABC = a

2 q

b2− √3a2

√ 3ab2

12 .

Câu 9 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 10 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 D (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1

3.

Câu 11 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông

với cạnh huyền bằng 2a Tính thể tích của khối nón

A. 2π.a

3

π√2.a3

π.a3

4π√2.a3

Trang 2

Câu 12 Cho a > 0 và a , 1 Giá trị của alog a 3bằng?

Câu 13 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã

cho có diện tích lớn nhất bằng?

A. 3

3

2) B 3√3(m2) C. 3

√ 3

2) D 1 (m2)

Câu 14 Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

9.

Câu 15 Tìm nghiệm của phương trình 2x = (√3)x

Câu 16 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A −2 ≤ m ≤ 2 B −2 < m < 2 C m= 2 D 0 < m < 2.

Câu 17 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 18 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 11

29

11

29

13.

Câu 19 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 20 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 21 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số phức.

C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số thực.

Câu 22 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 23 Những số nào sau đây vừa là số thực và vừa là số ảo?

A Không có số nào B Chỉ có số 1 C C.Truehỉ có số 0 D 0 và 1.

Câu 24 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= 4√5 B |w|= √48 C |w|= √85 D |w|= 6√3

Câu 25 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 26 Tính tích phân I = Re

1

lnnx

x dx, (n > 1)

A I = 1

n+ 1.

Câu 27 Một vật chuyển động với gia tốc a(t)= −20(1 + 2t)−2 Khi t= 0 thì vận tốc của vật là 30 (m/s) Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?

Trang 3

Câu 28 Cho

4 R

−1

f(x)dx= 10 vàR4

1

f(x)dx= 8 TínhR1

−1

f(x)dx

Câu 29 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình

A (x+ 1)2+ (y − 1)2+ (z − 2)2= 6 B (x+ 1)2+ (y − 1)2+ (z − 2)2 = √6

C (x − 1)2+ (y + 1)2+ (z + 2)2= 6 D (x+ 1)2+ (y − 1)2+ (z − 2)2 = 24

Câu 30 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường

y= 1

x, x= 1, x = 2 và trục hoành

A V = π

5 .

Câu 31 Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vuông ABCD có hai cạnh

AB, CD lần lượt là hai dây cung của hai đường tròn đáy, cạnh AD, BC không phải là đường sinh của hình trụ (T ) Tính cạnh của hình vuông này

√ 10

√ 5

Câu 32 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng

với lãi suất 3

A 46.538667 đồng B 45.188.656 đồng C 43.091.358 đồng D 48.621.980 đồng Câu 33 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : x −3

d2 : x= ty = −tz = 2 (t ∈ R) Đường thẳng đi qua điểm A(0; 1; 1), vuông góc với d1và cắt d2 có phương trình là:

A. x

−1 = y −1

−3 = z −1

x

1 = y −1

−3 = z −1

4 .

C. x

−1 = y −1

x −1

−3 = z −1

4 .

Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 42 B P= (|z| − 2)2 C P =

|z|2− 22 D P = (|z| − 4)2

Câu 35 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3.

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 0;1

4

!

4;

5 4

!

2;

9 4

!

4;+∞

!

Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 38 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 4

√ 5

√ 6

√ 2

√ 2

3 .

Trang 4

Câu 39 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min = 1 B |w|min = 1

2. C |w|min = 3

2. D |w|min= 2

Câu 40 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M= |z + 1 − i| là

Câu 41 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

Câu 42 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

2.

Câu 43 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = 5x +cos3xln 5. B y′ = (1 − sin 3x)5x +cos3xln 5.

C y′ = (1 + 3 sin 3x)5x +cos3xln 5. D y′ = (1 − 3 sin 3x)5x +cos3xln 5.

Câu 44 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Câu 45 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 46 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 47 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m > 1 hoặc m < −1

Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (2; 14; 14) B 2→−u + 3−→v = (1; 14; 15)

C 2→−u + 3−→v = (1; 13; 16) D 2→−u + 3−→v = (3; 14; 16)

Câu 50 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′

Trang 5

HẾT

Ngày đăng: 05/04/2023, 08:36

🧩 Sản phẩm bạn có thể quan tâm

w