Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai? A aloga x = x B l[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A alogax = x B loga(x − 2)2 = 2loga(x − 2)
C loga2x= 1
2= 2logax
Câu 2 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
Câu 3 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
A. 4
Câu 4 Công thức nào sai?
Câu 5 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; −5; 0) B (0; 5; 0) C (0; 1; 0) D (0; 0; 5).
Câu 6 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (2; −1; −2) B (2; −1; 2) C (−2; 1; 2) D (−2; −1; 2).
Câu 7 Cho số thực dươngm Tính I = Rm
0
dx
x2+ 3x + 2 theo m?
A I = ln(2m+ 2
m+ 2 ). B I = ln(
m+ 2 2m+ 2). C I = ln(
m+ 2
m+ 1). D I = ln(
m+ 1
m+ 2).
Câu 8 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 9 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 10 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
3.
Câu 11 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 12 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
4.
Câu 13 Cho hình lăng trụ đứng ABC.A1B1C1có AB = a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi
K, I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
√
√ 15
a
√ 5
6 .
Câu 14 Biết
5 R
1
dx 2x − 1 = ln T Giá trị của T là:
Trang 2Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 16 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A ln 2 − 1
1
1
2.
Câu 17 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 34 B |z|= 5
√ 34
√ 34
3 . D |z|= √34
Câu 18 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 19 Những số nào sau đây vừa là số thực và vừa là số ảo?
A 0 và 1 B C.Truehỉ có số 0 C Chỉ có số 1 D Không có số nào Câu 20 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 21 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là3 và phần ảo là 2 B Phần thực là−3 và phần ảo là −2i.
C Phần thực là −3 và phần ảo là−2 D Phần thực là 3 và phần ảo là 2i.
Câu 22 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 23 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 24 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A |z2|= |z|2 B z+ z = 2bi C z · z= a2− b2 D z − z= 2a
Câu 25 Với mọi số phức z, ta có |z+ 1|2bằng
Câu 26 Tính tích phân I =
e R
1
lnnx
x dx, (n > 1)
A I = 1
n+ 1.
Câu 27 Tìm tất cả các giá trị của tham số m để hàm số y= (m + 2)x3
3 − (m+ 2)x2+ (m − 8)x + m5nghịch biến trên R
Câu 28 Cho log2b= 3, log2c= −4 Hãy tính log2(b2c)
Câu 29 Cho hình chóp S ABCcó S A vuông góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d
BAC = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC
A V = 5
√ 5π
3 C V = 20
√ 5πa3
√ 5
6 πa3
Câu 30 Xác định tập tất cả các giá trị của tham số m để phương trình
2x3+ 3
2x
2− 3x − 1
2
=
m
2 − 1
có 4 nghiệm phân biệt
Trang 3A S = (−3; −1) ∪ (1; 2) B S = (−2; −3
4) ∪ (
19
4 ; 7).
C S = (−5; −3
4) ∪ (
19
4) ∪ (
19
4 ; 6).
Câu 31 Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vuông ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường tròn đáy, cạnh AD, BC không phải là đường sinh của hình trụ (T ) Tính cạnh của hình vuông này
√ 10
√
Câu 32 Cho hàm số y= 5x 2 −3x Tính y′
A y′= (2x − 3)5x 2 −3xln 5 B y′ = (2x − 3)5x 2 −3x
Câu 33 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng
với lãi suất 3
A 46.538667 đồng B 43.091.358 đồng C 45.188.656 đồng D 48.621.980 đồng Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2
√
97
√ 85
Câu 35 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1 z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1
z2
+
z2
z1
3√2
2 .
Câu 36 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 38 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A Phần thực của z là số âm B |z|= 1
C z là một số thực không dương D z là số thuần ảo.
Câu 39 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
√ 3
√ 2
2 .
Câu 40 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 41 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| > 2 B. 1
2 < |z| < 3
2. C |z| <
1
3
2 ≤ |z| ≤ 2.
Trang 4Câu 42 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A.
√
2
1
1
2.
Câu 43 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 125π
√
3
400π√3
250π√3
500π√3
Câu 44 Hàm số nào trong các hàm số sau đồng biến trên R.
x+ 2 .
Câu 45 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A −4 ≤ m ≤ −1 B m < 0 C −3 ≤ m ≤ 0 D m > −2.
Câu 46 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
33π
32π
5 .
Câu 47 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
6.
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A 2x+ y − 4z + 1 = 0 B −2x − y+ 4z − 8 = 0
C 2x+ y − 4z + 5 = 0 D 2x+ y − 4z + 7 = 0
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(5
3;
11
3 ;
17
2
3;
7
3;
21
7
3;
10
3 ;
31
4
3;
10
3 ;
16
3 ).
Câu 50 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = √ 1
x2− 1 ln 4. B y
2(x2− 1) ln 4. C y
(x2− 1) ln 4. D y
(x2− 1)log4e.
Trang 5HẾT