1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề Luyện Thi Thpt Môn Toán (888).Pdf

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Luyện Thi Thpt Quốc Gia Môn Toán Năm Học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 123,92 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. m

2− 3

4m2− 3

m2− 12

m2− 12

Câu 2 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

A (1

Câu 3 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 4 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

B Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

C Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

Câu 5 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 6 Tìm nghiệm của phương trình 2x = (√3)x

Câu 7 Đạo hàm của hàm số y= log√

2

3x − 1

là:

A y′= 6

3x − 1

ln 2

3x − 1

ln 2

(3x − 1) ln 2. D y

(3x − 1) ln 2.

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − y + 2z = 0 B (P) : x − y − 2z = 0 C (P) : x + y + 2z = 0 D (P) : x − 2y − 2 = 0.

Câu 9 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

Câu 10 NếuR02 f(x)= 4 thì R2

0[1

2f(x) − 2] bằng

Câu 11 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Trang 2

Câu 12 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 4

9

18

1

7.

Câu 13 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

2 + C

C.R f(x)= sinx + x2

Câu 14 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 15 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A Q(1; 2; −3) B M(2; −1; −2) C P(1; 2; 3) D N(2; 1; 2).

Câu 16 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x3− 3x − 5 B y= x −3

x −1. C y= x2− 4x+ 1 D y= x4− 3x2+ 2

Câu 17 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 18 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A |z|= 4 B z là số thuần ảo C z= 1

Câu 19 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là−3 và phần ảo là −2i B Phần thực là 3 và phần ảo là 2i.

C Phần thực là −3 và phần ảo là−2 D Phần thực là3 và phần ảo là 2.

Câu 20 Số phức z= 1+ i

1 − i

!2016 + 1 − i

1+ i

!2018 bằng

Câu 21 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 22 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 23 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 24 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z · z = a2− b2 B z+ z = 2bi C |z2|= |z|2 D z − z= 2a

Câu 25 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Trang 3

Câu 26 Cho a3x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?

A (0;1

1

2; 1).

Câu 27 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số

A f (x)= − 1

C f (x)= −2023cos(2023x) D f (x)= 2023cos(2023x)

Câu 28 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là

A (−1; −1; −3) B (3; 1; 1) C (3; 3; −1) D (1; 1; 3).

Câu 29 Tích phânR1

0 e−x dx bằng

A. 1

e −1

1

Câu 30 F(x) là một nguyên hàm của hàm số y= xex 2

Hàm số nào sau đây không phải là F(x)?

A F(x)= −1

2e

x 2

+ C B F(x) = −1

2(2 − e

x 2

) C F(x) = 1

2(e

x 2

+ 5) D F(x)= 1

2e

x 2

+ 2

Câu 31 BiếtR8

1 f(x)= −2; R4

1 f(x)= 3; R4

1 g(x)= 7 Mệnh đề nào sau đây sai?

A.R8

1 [ f (x)+ g(x)] = 10

C.R8

1 [4 f (x) − 2g(x)]= −2

Câu 32 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e

A F(x)= ex+ 1 B F(x)= ex

C F(x) = ex +1. D F(x)= e2x

Câu 33 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x − 2y+ z + 4 = 0 B 3x − 2y+ z − 12 = 0

C 3x+ 2y + z − 4 = 0 D 3x − 2y+ z − 4 = 0

Câu 34 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 35 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

A P=

2

√ 3

2 .

Câu 36 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A 2 < |z| < 5

3

2 < |z| < 2 C. 5

2 < |z| < 7

1

2 < |z| < 3

2.

Câu 38 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 39 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

Câu 40 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Trang 4

Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 42 Cho a, b, c là các số thực và z= −1

2 +

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 44 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ n + 2

C log22250= 3mn+ n + 4

Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y + 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 D (x − 1)2+ (y − 2)2+ (z − 4)2= 1

Câu 46 Hàm số nào trong các hàm số sau đồng biến trên R.

x+ 2 .

Câu 47 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

5

a3√ 15

a3√ 15

a3√ 15

Câu 48 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích

toàn phầnSt pcủa hình nón (N) bằng

A St p = πRh + πR2 B St p = 2πRl + 2πR2 C St p = πRl + 2πR2 D St p = πRl + πR2

Câu 49 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

4.

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Trang 5

HẾT

Ngày đăng: 11/04/2023, 09:28