Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diệ[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với
cạnh huyền bằng 2a Tính thể tích của khối nón
A. 4π
√
2.a3
2π.a3
π.a3
π√2.a3
Câu 2 Biết
5
R
1
dx 2x − 1 = ln T Giá trị của T là:
Câu 3 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 4 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A −1
2
1
6.
Câu 5 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 6 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 2x2+ 1 B y = −x4+ 1 C y= x4+ 1 D y= x4+ 2x2+ 1
Câu 7 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 8 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= −3 B f (−1)= −1 C f (−1)= 3 D f (−1)= −5
Câu 9 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 10 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
11
Câu 11 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
3πr2l
Câu 12 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
24
√ 2
Câu 13 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln2
2.
Câu 14 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
2
Trang 2Câu 15 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
2 a
√ 2
4 a
√ 2
6 a
3
Câu 16 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; −2; −3) B (1; 2; −3) C (−1; 2; 3) D (1; −2; 3).
Câu 17 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Chỉ có số 1 B 0 và 1 C C.Truehỉ có số 0 D Không có số nào.
Câu 18 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= √85 B |w|= 4√5 C |w|= 6√3 D |w|= √48
Câu 19 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 20 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 21 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|=
√
34
√ 34
3 . D |z|= √34
Câu 22 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 23 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
A −21008+ 1 B −22016 C −21008 D 21008
Câu 24 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 25 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số thực không âm Câu 26 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng
qua I, song song với mặt phẳng (ABC) có phương trình là:
A z − 1 = 0 B x − 1= 0 C x+ y + z − 3 = 0 D y − 1= 0
Câu 27 Mệnh đề nào sau đây sai?
A.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R
B. R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R
C.R( f (x) − g(x))= R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R
D.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R
Câu 28 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng
(−2; 3) Tính I= R−12[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4
Câu 29 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng
A F(x) = f′
(x) B F(x) = f′
(x)+ C C F′(x)= f (x) D F′(x)+ C = f (x)
Trang 3Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(−1; 0; −2) B C(−1; −4; 4) C C(1; 0; 2) D C(1; 4; 4).
Câu 31 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A x − y+ z + 6 = 0 B x+ y − z − 3 = 0 C 6x + y − z − 6 = 0 D x + y − z + 1 = 0.
Câu 32 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
C x − 2y+ 2z − 15 = 0 D x+ 2y + 2z − 15 = 0
Câu 33 Tích phânR01e−x dx bằng
1
e −1
e .
Câu 34 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 1 B |z|= 1
Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2
√
85
√ 97
Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 37 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
√ 2
1
5.
Câu 38 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 39 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 3
√ 6
√ 2
√ 5
√ 2
3 .
Câu 40 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A 3 < |z| < 5 B. 1
2 < |z| < 2 C. 5
2 < |z| < 4 D. 3
2 < |z| < 3
Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 42 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 1 C |w|min = 3
2. D |w|min = 2
Trang 4Câu 43 Cho m= log23; n= log52 Tính log22250 theo m, n.
A log22250= 3mn+ n + 4
C log22250= 2mn+ n + 2
Câu 44 Biết
π 2 R
0
sin 2xdx= ea Khi đó giá trị a là:
Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2
(x2− 2x)dx
B.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx −
3
R
2
(x2− 2x)dx
C.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3
R
2
|x2− 2x|dx
D.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2
(x2− 2x)dx
Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
Câu 47 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 49 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 50 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Trang 5HẾT